[1]
|
V. I. Arnold, Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields, Functional Analysis and Its Applications, 1977, 11, 85–92. doi: 10.1007/BF01081886
CrossRef Google Scholar
|
[2]
|
M. Caubergh, F. Dumortier and R. Roussarie, Alien limit cycles near a Hamiltonian 2-saddle cycle, C. R. Acad. Sci. Paris, Ser. I, 2005, 340(8), 587–592. doi: 10.1016/j.crma.2005.03.009
CrossRef Google Scholar
|
[3]
|
L. Chen and M. Wang, The relative position and the number of limit cycles of a quadratic differential system, Acta Math. Sinica, 1979, 22(6), 751–758.
Google Scholar
|
[4]
|
B. Coll, F. Dumortier and R. Prohens, Alien limit cycles in Lienard equations, Journal of Differential Equations, 2013, 254(3), 1582–1600.
Google Scholar
|
[5]
|
F. Dumortier and R. Roussarie, Abelian integrals and limit cycles, Journal of Differential Equations, 2006, 227(1), 116–165.
Google Scholar
|
[6]
|
M. Han, Cyclicity of planar homoclinic loops and quadratic integrable systems, Science in China Series A: Mathematics, 1997, 40(12), 1247–1258. doi: 10.1007/BF02876370
CrossRef Google Scholar
|
[7]
|
M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.
Google Scholar
|
[8]
|
M. Han, S. Hu and X. Liu, On the stability of double homoclinic and heteroclinic cycles, Nonlinear Analysis: Theory, Methods & Applications, 2003, 53(5), 701–713.
Google Scholar
|
[9]
|
M. Han and J. Li, Lower bounds for the Hilbert number of polynomial systems, Journal of Differential Equations, 2012, 252(4), 3278–3304.
Google Scholar
|
[10]
|
M. Han, J. Yang, A. Tarta and G. Yang, Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 2008, 20, 923–944. doi: 10.1007/s10884-008-9108-3
CrossRef Google Scholar
|
[11]
|
M. Han and Y. Ye, On the coefficients appearing in the expansion of Melnikov function in homoclinic bifurcations, Ann. Differ. Equ., 1998, 14(2), 156–162.
Google Scholar
|
[12]
|
M. Han and Z. Zhang, Cyclicity 1 and 2 conditions for a 2-polycycle of integrable systems on the plane, Journal of Differential Equations, 1999, 155(2), 245–261.
Google Scholar
|
[13]
|
M. Han and H. Zhu, The loop quantities and bifurcations of homoclinic loops, Journal of Differential Equations, 2007, 234(2), 339–359.
Google Scholar
|
[14]
|
J. Huang, H. Liang and J. Llibre, Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous nonlinearities, Journal of Differential Equations, 2018, 265(9), 3888–3913. doi: 10.1016/j.jde.2018.05.019
CrossRef Google Scholar
|
[15]
|
C. Li, C. Liu and J. Yang, A cubic system with thirteen limit cycles, Journal of Differential Equations, 2009, 246(9), 3609–3619. doi: 10.1016/j.jde.2009.01.038
CrossRef Google Scholar
|
[16]
|
J. Li, Hilbert's 16th problem and bifurcations of planar vector fields, Int. J. Bifurcat. Chaos, 2003, 13(1), 47–106. doi: 10.1142/S0218127403006352
CrossRef Google Scholar
|
[17]
|
J. Li and Y. Liu, New results on the study of zq-equivariant planar polynomial vector fields, Qualitative Theory of Dynamical Systems, 2010, 9(1–2), 167–219. doi: 10.1007/s12346-010-0024-7
CrossRef Google Scholar
|
[18]
|
J. Llibre, R. Ramirez, V. Ramirez and N. Sadovskaia, The 16th Hilbert problem restricted to circular algebraic limit cycles, Journal of Differential Equations, 2016, 260(7), 5726–5760. doi: 10.1016/j.jde.2015.12.019
CrossRef Google Scholar
|
[19]
|
R. Roussarie, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Brasil. Mat., 1986, 17(2), 67–101. doi: 10.1007/BF02584827
CrossRef Google Scholar
|
[20]
|
L. Sheng, M. Han and Y. Tian, On the number of limit cycles bifurcating from a compound polycycle, Int. J. Bifurcat. Chaos, Accepted.
Google Scholar
|
[21]
|
S. Shi, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica, 1980, 23(2), 153–158.
Google Scholar
|
[22]
|
X. Sun and L. Zhao, Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Applied Mathematics and Computation, 2016, 289, 194–203. doi: 10.1016/j.amc.2016.04.018
CrossRef Google Scholar
|
[23]
|
Y. Tian and M. Han, Hopf and homoclinic bifurcations for near-Hamiltonian systems, Journal of Differential Equations, 2017, 262(4), 3214–3234. doi: 10.1016/j.jde.2016.11.026
CrossRef Google Scholar
|
[24]
|
J. Yang, Y. Xiong and M. Han, Limit cycle bifurcations near a 2-polycycle or double 2-polycycle of planar systems, Nonlinear Analysis-Theory Methods & Applications, 2014, 95, 756–773.
Google Scholar
|
[25]
|
J. Yang, P. Yu and M. Han, Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle of order m, Journal of Differential Equations, 2019, 266(1), 455–492. doi: 10.1016/j.jde.2018.07.042
CrossRef Google Scholar
|
[26]
|
X. Zhang, The 16th Hilbert problem on algebraic limit cycles, Journal of Differential Equations, 2011, 251(7), 1778–1789. doi: 10.1016/j.jde.2011.06.008
CrossRef Google Scholar
|