2019 Volume 9 Issue 6
Article Contents

Lijuan Sheng, Maoan Han. BIFURCATION OF LIMIT CYCLES FROM A COMPOUND LOOP WITH FIVE SADDLES[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2482-2495. doi: 10.11948/20190342
Citation: Lijuan Sheng, Maoan Han. BIFURCATION OF LIMIT CYCLES FROM A COMPOUND LOOP WITH FIVE SADDLES[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2482-2495. doi: 10.11948/20190342

BIFURCATION OF LIMIT CYCLES FROM A COMPOUND LOOP WITH FIVE SADDLES

  • Corresponding author: Email address:mahan@shnu.edu.cn(M. Han)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11801372, 11931016, 11771296, 11971317 and 11871042)
  • We concern the number of limit cycles of a polynomial system with degree nine. We prove that under different conditions, the system can have 12 and 20 limit cycles bifurcating from a compound loop with five saddles. Our method relies upon the Melnikov function method and the method of stability-changing of a double homoclinic loop proposed by the authors[J. Yang, Y. Xiong and M. Han, Nonlinear Anal-Theor., 2014, 95, 756-773].
    MSC: 34C07
  • 加载中
  • [1] V. I. Arnold, Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields, Functional Analysis and Its Applications, 1977, 11, 85–92. doi: 10.1007/BF01081886

    CrossRef Google Scholar

    [2] M. Caubergh, F. Dumortier and R. Roussarie, Alien limit cycles near a Hamiltonian 2-saddle cycle, C. R. Acad. Sci. Paris, Ser. I, 2005, 340(8), 587–592. doi: 10.1016/j.crma.2005.03.009

    CrossRef Google Scholar

    [3] L. Chen and M. Wang, The relative position and the number of limit cycles of a quadratic differential system, Acta Math. Sinica, 1979, 22(6), 751–758.

    Google Scholar

    [4] B. Coll, F. Dumortier and R. Prohens, Alien limit cycles in Lienard equations, Journal of Differential Equations, 2013, 254(3), 1582–1600.

    Google Scholar

    [5] F. Dumortier and R. Roussarie, Abelian integrals and limit cycles, Journal of Differential Equations, 2006, 227(1), 116–165.

    Google Scholar

    [6] M. Han, Cyclicity of planar homoclinic loops and quadratic integrable systems, Science in China Series A: Mathematics, 1997, 40(12), 1247–1258. doi: 10.1007/BF02876370

    CrossRef Google Scholar

    [7] M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.

    Google Scholar

    [8] M. Han, S. Hu and X. Liu, On the stability of double homoclinic and heteroclinic cycles, Nonlinear Analysis: Theory, Methods & Applications, 2003, 53(5), 701–713.

    Google Scholar

    [9] M. Han and J. Li, Lower bounds for the Hilbert number of polynomial systems, Journal of Differential Equations, 2012, 252(4), 3278–3304.

    Google Scholar

    [10] M. Han, J. Yang, A. Tarta and G. Yang, Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 2008, 20, 923–944. doi: 10.1007/s10884-008-9108-3

    CrossRef Google Scholar

    [11] M. Han and Y. Ye, On the coefficients appearing in the expansion of Melnikov function in homoclinic bifurcations, Ann. Differ. Equ., 1998, 14(2), 156–162.

    Google Scholar

    [12] M. Han and Z. Zhang, Cyclicity 1 and 2 conditions for a 2-polycycle of integrable systems on the plane, Journal of Differential Equations, 1999, 155(2), 245–261.

    Google Scholar

    [13] M. Han and H. Zhu, The loop quantities and bifurcations of homoclinic loops, Journal of Differential Equations, 2007, 234(2), 339–359.

    Google Scholar

    [14] J. Huang, H. Liang and J. Llibre, Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous nonlinearities, Journal of Differential Equations, 2018, 265(9), 3888–3913. doi: 10.1016/j.jde.2018.05.019

    CrossRef Google Scholar

    [15] C. Li, C. Liu and J. Yang, A cubic system with thirteen limit cycles, Journal of Differential Equations, 2009, 246(9), 3609–3619. doi: 10.1016/j.jde.2009.01.038

    CrossRef Google Scholar

    [16] J. Li, Hilbert's 16th problem and bifurcations of planar vector fields, Int. J. Bifurcat. Chaos, 2003, 13(1), 47–106. doi: 10.1142/S0218127403006352

    CrossRef Google Scholar

    [17] J. Li and Y. Liu, New results on the study of zq-equivariant planar polynomial vector fields, Qualitative Theory of Dynamical Systems, 2010, 9(1–2), 167–219. doi: 10.1007/s12346-010-0024-7

    CrossRef Google Scholar

    [18] J. Llibre, R. Ramirez, V. Ramirez and N. Sadovskaia, The 16th Hilbert problem restricted to circular algebraic limit cycles, Journal of Differential Equations, 2016, 260(7), 5726–5760. doi: 10.1016/j.jde.2015.12.019

    CrossRef Google Scholar

    [19] R. Roussarie, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Brasil. Mat., 1986, 17(2), 67–101. doi: 10.1007/BF02584827

    CrossRef Google Scholar

    [20] L. Sheng, M. Han and Y. Tian, On the number of limit cycles bifurcating from a compound polycycle, Int. J. Bifurcat. Chaos, Accepted.

    Google Scholar

    [21] S. Shi, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica, 1980, 23(2), 153–158.

    Google Scholar

    [22] X. Sun and L. Zhao, Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Applied Mathematics and Computation, 2016, 289, 194–203. doi: 10.1016/j.amc.2016.04.018

    CrossRef Google Scholar

    [23] Y. Tian and M. Han, Hopf and homoclinic bifurcations for near-Hamiltonian systems, Journal of Differential Equations, 2017, 262(4), 3214–3234. doi: 10.1016/j.jde.2016.11.026

    CrossRef Google Scholar

    [24] J. Yang, Y. Xiong and M. Han, Limit cycle bifurcations near a 2-polycycle or double 2-polycycle of planar systems, Nonlinear Analysis-Theory Methods & Applications, 2014, 95, 756–773.

    Google Scholar

    [25] J. Yang, P. Yu and M. Han, Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle of order m, Journal of Differential Equations, 2019, 266(1), 455–492. doi: 10.1016/j.jde.2018.07.042

    CrossRef Google Scholar

    [26] X. Zhang, The 16th Hilbert problem on algebraic limit cycles, Journal of Differential Equations, 2011, 251(7), 1778–1789. doi: 10.1016/j.jde.2011.06.008

    CrossRef Google Scholar

Figures(6)  /  Tables(2)

Article Metrics

Article views(2261) PDF downloads(537) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint