Citation: | Chang-Jian Zhao. ORLICZ MULTIPLE AFFINE QUERMASSINTEGRALS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 632-655. doi: 10.11948/20190154 |
In the paper, our main aim is to generalize the mixed affine quermassintegrals of j convex bodies to the Orlicz space. We find a new affine geometric quantity by calculating first-order variation and call it Orlicz multiple affine quermassintegrals. The mixed affine quermassintegrals and AleksandrovFenchel inequality for the mixed affine quermassintegrals of j convex bodies are extended to an Orlicz setting. A new Orlicz-Aleksandrov-Fenchel inequality for the mixed affine quermassintegrals of j convex bodies is established. The new Orlicz-Aleksandrov-Fenchel inequality in special cases yield the classical Aleksandrov-Fenchel inequality for mixed volumes, the Aleksandrov-Fenchel inequality for the mixed affine quermassintegrals which is just built, and Zou's Orlicz Minkowski inequality for affine quermassintegrals, respectively. This new concept of Lp-multiple affine quermassintegrals and Lp-AleksandrovFenchel inequality for the Lp-multiple affine quermassintegrals is also derived. Moreover, the Orlicz multiple mixed volumes and the Orlicz-AleksandrovFenchel inequality for the mixed volumes are also included in our new conclusions. As an application, a new Orlicz-Brunn-Minkowski inequality for the mixed affine quermassintegrals of j convex bodies is proved.
[1] | A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, Ⅱ: Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen, Mat. Sbornik N. S., 1937, 2, 1205–1238. |
[2] | A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, I: Verall-gemeinerung einiger Begriffe der Theorie der konvexen Körper, Mat. Sbornik N. S., 1937, 2, 947–972. |
[3] | Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988. |
[4] | H. Busemann, Convex surfaces, Interscience, New York, 1958. |
[5] | W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat. -fys. Medd., 1938, 16, 1–31. |
[6] | W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math., 1961, 13, 444–453. doi: 10.4153/CJM-1961-037-0 |
[7] | W. J. Firey, p-means of convex bodies, Math. Scand., 1962, 10, 17–24. doi: 10.7146/math.scand.a-10510 |
[8] | R. J. Gardner, Geometric Tomography, Cambridge University Press, second edition, New York, 2006. |
[9] | R. J. Gardner, D. Hug and W. Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Diff. Geom., 2014, 97(3), 427–476. |
[10] | C. Haberl and E. Lutwak, D. Yang and et al, The even Orlicz Minkowski problem, Adv. Math., 2010, 224, 2485–2510. doi: 10.1016/j.aim.2010.02.006 |
[11] | C. Haberl and L. Parapatits, The Centro-Affine Hadwiger Theorem, J. Amer. Math. Soc., 2014, 27, 685–705. doi: 10.1090/S0894-0347-2014-00781-5 |
[12] | C. Haberl and F. E. Schuster, Asymmetric affine Lp Sobolev inequalities, J. Funct. Anal., 2009, 257, 641–658. doi: 10.1016/j.jfa.2009.04.009 |
[13] | C. Haberl and F. E. Schuster, General Lp affine isoperimetric inequalities, J. Diff. Geom., 2009, 83, 1–26. |
[14] | C. Haberl, F. E. Schuster and J. Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann., 2012, 352, 517–542. doi: 10.1007/s00208-011-0640-9 |
[15] | J. Hoffmann-Jϕrgensen, Probability With a View Toward Statistics, Vol. I, Chapman and Hall, New York, 1994, 165–243. |
[16] | Q. Huang and B. He, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom., 2012, 48, 281–297. doi: 10.1007/s00454-012-9434-4 |
[17] | H. Jin, S. Yuan and G. Leng, On the dual Orlicz mixed volumes, Chinese Ann. Math., Ser. B, 2015, 36, 1019–1026. |
[18] | M. A. Krasnosel'skii and Y. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961. |
[19] | K. Leichtweiβ, Konvexe Mengen, Springer, Berlin, 1980. |
[20] | A. Li and G. Leng, A new proof of the Orlicz Busemann-Petty centroid inequality, Proc. Amer. Math. Soc., 2011, 139, 1473–1481. doi: 10.1090/S0002-9939-2010-10651-2 |
[21] | Y. Lin, Affine Orlicz Pólya-Szegö principle for log-concave functions, J. Func. Aanl., 2017, 273, 3295–3326. doi: 10.1016/j.jfa.2017.08.017 |
[22] | M. Ludwig and M. Reitzner, A classification of SL(n) invariant valuations, Ann. Math., 2010, 172, 1223–1271. doi: 10.4007/annals.2010.172.1223 |
[23] | E. Lutwak, The Brunn-Minkowski-Firey theory I. mixed volumes and the Minkowski problem, J. Diff. Goem., 1993, 38, 131–150. |
[24] | E. Lutwak, The Brunn-Minkowski-Firey theory. Ⅱ. Affine and geominimal surface areas, Adv. Math., 1996, 118, 244–294. doi: 10.1006/aima.1996.0022 |
[25] | E. Lutwak, A general isepiphanic inequality, Proc. Amer. Math. Soc., 1984, 90, 451–421. |
[26] | E. Lutwak, Inequalities for Hadwigers harmonic quermassintegrals, Math. Ann., 1988, 280, 165–175. doi: 10.1007/BF01474188 |
[27] | E. Lutwak, D. Yang and G. Zhang, On the Lp-Minkowski problem, Trans. Amer. Math. Soc., 2004, 356, 4359–4370. |
[28] | E. Lutwak, D. Yang and G. Zhang, Lp John ellipsoids, Proc. London Math. Soc., 2005, 90, 497–520. doi: 10.1112/S0024611504014996 |
[29] | E. Lutwak, D. Yang and G. Zhang, Lp affine isoperimetric inequalities, J. Diff. Geom., 2000, 56, 111–132. |
[30] | E. Lutwak, D. Yang and G. Zhang, Sharp affine Lp Sobolev inequalities, J. Diff. Geom., 2002, 62, 17–38. |
[31] | E. Lutwak, D. Yang and G. Zhang, The Brunn-Minkowski-Firey inequality for nonconvex sets, Adv. Appl. Math., 2012, 48, 407–413. doi: 10.1016/j.aam.2011.11.003 |
[32] | E. Lutwak, D. Yang and G. Zhang, Orlicz projection bodies, Adv. Math., 2010, 223, 220–242. doi: 10.1016/j.aim.2009.08.002 |
[33] | E. Lutwak, D. Yang and G. Zhang, Orlicz centroid bodies, J. Diff. Geom., 2010, 84, 365–387. |
[34] | L. Parapatits, SL(n)-Covariant Lp-Minkowski Valuations, J. Lond. Math. Soc., 2014, 89, 397–414. doi: 10.1112/jlms/jdt068 |
[35] | L. Parapatits, SL(n)-Contravariant Lp-Minkowski Valuations, Trans. Amer. Math. Soc., 2014, 366, 1195–1211. |
[36] | M. Rao and Z. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. |
[37] | R. Schneider, Boundary structure and curvature of convex bodies, Contributions to Geometry, Birkhäuser, Basel, 1979, 13–59. |
[38] | R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993. |
[39] | C. Schütt and E. Werner, Surface bodies and p-affine surface area, Adv. Math., 2004, 187, 98–145. doi: 10.1016/j.aim.2003.07.018 |
[40] | W. Wang, W. Shi and S. Ye, Dual mixed Orlicz-Brunn-Minkowski inequality and dual Orlicz mixed quermassintegrals, Indaga. Math., 2017, 28, 721–735. doi: 10.1016/j.indag.2017.04.001 |
[41] | E. Werner, Rényi divergence and Lp-affine surface area for convex bodies, Adv. Math., 2012, 230, 1040–1059. doi: 10.1016/j.aim.2012.03.015 |
[42] | E. Werner and D. Ye, New Lp affine isoperimetric inequalities, Adv. Math., 2008, 218, 762–780. doi: 10.1016/j.aim.2008.02.002 |
[43] | D. Xi, H. Jin and G. Leng, The Orlicz Brunn-Minkwski inequality, Adv. Math., 2014, 260, 350–374. doi: 10.1016/j.aim.2014.02.036 |
[44] | D. Xi and G. Leng, Dar's conjecture and the log-Brunn-Minkowski inequality, J. Diff. Geom, 2016, 103, 145–189. |
[45] | D. Ye, Dual Orlicz-Brunn-Minkowski theory: dual Orlicz Lφ affine and geominimal surface areas, J. Math. Anal. Appl., 2016, 443, 352–371. doi: 10.1016/j.jmaa.2016.05.027 |
[46] | C. Zhao, On mixed affine quermassintegrals, Balkan J. Geom. Appl., 2018, 23(2), 76–96. |
[47] | C. Zhao, Orlicz dual mixed volumes, Results Math., 2015, 68, 93–104. doi: 10.1007/s00025-014-0424-0 |
[48] | C. Zhao, Orlicz-Brunn-Minkowski inequality for radial Blaschke-Minkowski homomorphisms, Quaestiones Math., 2018, 41(7), 937–950. doi: 10.2989/16073606.2017.1417336 |
[49] | C. Zhao, Orlicz dual affine quermassintegrals, Forum Math., 2018, 30(4), 929– 945. doi: 10.1515/forum-2017-0174 |
[50] | C. Zhao, Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes, J. Func. Spaces, 2018, 2018, Article ID 9752178, pages 17. |
[51] | C. Zhao, The log-Aleksandrov–Fenchel inequality, Mediterr. J. Math., 2020, 17, 96. doi: 10.1007/s00009-020-01521-7 |
[52] | C. Zhao, Orlicz mixed affine surface areas, Balkan J. Geom. Appl., 2019, 24(2), 100–118. |
[53] | C. Zhao, The mixed affine quermassintegrals, arXiv: submit/3350709 [math. GM] 2 Sep 2020. |
[54] | G. Zhu, The Orlicz centroid inequality for star bodies, Adv. Appl. Math., 2012, 48, 432–445. doi: 10.1016/j.aam.2011.11.001 |
[55] | D. Zou, Affine extremum problems in the Orlicz Brunn-Minkowski theory, PhD thesis (in chinese), Shanghai University, Shanghai, 2015, 91–106. |