2021 Volume 11 Issue 2
Article Contents

Chang-Jian Zhao. ORLICZ MULTIPLE AFFINE QUERMASSINTEGRALS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 632-655. doi: 10.11948/20190154
Citation: Chang-Jian Zhao. ORLICZ MULTIPLE AFFINE QUERMASSINTEGRALS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 632-655. doi: 10.11948/20190154

ORLICZ MULTIPLE AFFINE QUERMASSINTEGRALS

  • Corresponding author: Email: chjzhao@163.com(C. Zhao)
  • Fund Project: The author was supported by National Natural Science Foundation of China(10971205, 11371334)
  • In the paper, our main aim is to generalize the mixed affine quermassintegrals of j convex bodies to the Orlicz space. We find a new affine geometric quantity by calculating first-order variation and call it Orlicz multiple affine quermassintegrals. The mixed affine quermassintegrals and AleksandrovFenchel inequality for the mixed affine quermassintegrals of j convex bodies are extended to an Orlicz setting. A new Orlicz-Aleksandrov-Fenchel inequality for the mixed affine quermassintegrals of j convex bodies is established. The new Orlicz-Aleksandrov-Fenchel inequality in special cases yield the classical Aleksandrov-Fenchel inequality for mixed volumes, the Aleksandrov-Fenchel inequality for the mixed affine quermassintegrals which is just built, and Zou's Orlicz Minkowski inequality for affine quermassintegrals, respectively. This new concept of Lp-multiple affine quermassintegrals and Lp-AleksandrovFenchel inequality for the Lp-multiple affine quermassintegrals is also derived. Moreover, the Orlicz multiple mixed volumes and the Orlicz-AleksandrovFenchel inequality for the mixed volumes are also included in our new conclusions. As an application, a new Orlicz-Brunn-Minkowski inequality for the mixed affine quermassintegrals of j convex bodies is proved.

    MSC: 46E30, 52A39, 52A40
  • 加载中
  • [1] A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, Ⅱ: Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen, Mat. Sbornik N. S., 1937, 2, 1205–1238.

    Google Scholar

    [2] A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, I: Verall-gemeinerung einiger Begriffe der Theorie der konvexen Körper, Mat. Sbornik N. S., 1937, 2, 947–972.

    Google Scholar

    [3] Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988.

    Google Scholar

    [4] H. Busemann, Convex surfaces, Interscience, New York, 1958.

    Google Scholar

    [5] W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat. -fys. Medd., 1938, 16, 1–31.

    Google Scholar

    [6] W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math., 1961, 13, 444–453. doi: 10.4153/CJM-1961-037-0

    CrossRef Google Scholar

    [7] W. J. Firey, p-means of convex bodies, Math. Scand., 1962, 10, 17–24. doi: 10.7146/math.scand.a-10510

    CrossRef Google Scholar

    [8] R. J. Gardner, Geometric Tomography, Cambridge University Press, second edition, New York, 2006.

    Google Scholar

    [9] R. J. Gardner, D. Hug and W. Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Diff. Geom., 2014, 97(3), 427–476.

    Google Scholar

    [10] C. Haberl and E. Lutwak, D. Yang and et al, The even Orlicz Minkowski problem, Adv. Math., 2010, 224, 2485–2510. doi: 10.1016/j.aim.2010.02.006

    CrossRef Google Scholar

    [11] C. Haberl and L. Parapatits, The Centro-Affine Hadwiger Theorem, J. Amer. Math. Soc., 2014, 27, 685–705. doi: 10.1090/S0894-0347-2014-00781-5

    CrossRef Google Scholar

    [12] C. Haberl and F. E. Schuster, Asymmetric affine Lp Sobolev inequalities, J. Funct. Anal., 2009, 257, 641–658. doi: 10.1016/j.jfa.2009.04.009

    CrossRef Google Scholar

    [13] C. Haberl and F. E. Schuster, General Lp affine isoperimetric inequalities, J. Diff. Geom., 2009, 83, 1–26.

    Google Scholar

    [14] C. Haberl, F. E. Schuster and J. Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann., 2012, 352, 517–542. doi: 10.1007/s00208-011-0640-9

    CrossRef Google Scholar

    [15] J. Hoffmann-Jϕrgensen, Probability With a View Toward Statistics, Vol. I, Chapman and Hall, New York, 1994, 165–243.

    Google Scholar

    [16] Q. Huang and B. He, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom., 2012, 48, 281–297. doi: 10.1007/s00454-012-9434-4

    CrossRef Google Scholar

    [17] H. Jin, S. Yuan and G. Leng, On the dual Orlicz mixed volumes, Chinese Ann. Math., Ser. B, 2015, 36, 1019–1026.

    Google Scholar

    [18] M. A. Krasnosel'skii and Y. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.

    Google Scholar

    [19] K. Leichtweiβ, Konvexe Mengen, Springer, Berlin, 1980.

    Google Scholar

    [20] A. Li and G. Leng, A new proof of the Orlicz Busemann-Petty centroid inequality, Proc. Amer. Math. Soc., 2011, 139, 1473–1481. doi: 10.1090/S0002-9939-2010-10651-2

    CrossRef Google Scholar

    [21] Y. Lin, Affine Orlicz Pólya-Szegö principle for log-concave functions, J. Func. Aanl., 2017, 273, 3295–3326. doi: 10.1016/j.jfa.2017.08.017

    CrossRef Google Scholar

    [22] M. Ludwig and M. Reitzner, A classification of SL(n) invariant valuations, Ann. Math., 2010, 172, 1223–1271. doi: 10.4007/annals.2010.172.1223

    CrossRef Google Scholar

    [23] E. Lutwak, The Brunn-Minkowski-Firey theory I. mixed volumes and the Minkowski problem, J. Diff. Goem., 1993, 38, 131–150.

    Google Scholar

    [24] E. Lutwak, The Brunn-Minkowski-Firey theory. Ⅱ. Affine and geominimal surface areas, Adv. Math., 1996, 118, 244–294. doi: 10.1006/aima.1996.0022

    CrossRef Google Scholar

    [25] E. Lutwak, A general isepiphanic inequality, Proc. Amer. Math. Soc., 1984, 90, 451–421.

    Google Scholar

    [26] E. Lutwak, Inequalities for Hadwigers harmonic quermassintegrals, Math. Ann., 1988, 280, 165–175. doi: 10.1007/BF01474188

    CrossRef Google Scholar

    [27] E. Lutwak, D. Yang and G. Zhang, On the Lp-Minkowski problem, Trans. Amer. Math. Soc., 2004, 356, 4359–4370.

    Google Scholar

    [28] E. Lutwak, D. Yang and G. Zhang, Lp John ellipsoids, Proc. London Math. Soc., 2005, 90, 497–520. doi: 10.1112/S0024611504014996

    CrossRef Google Scholar

    [29] E. Lutwak, D. Yang and G. Zhang, Lp affine isoperimetric inequalities, J. Diff. Geom., 2000, 56, 111–132.

    Google Scholar

    [30] E. Lutwak, D. Yang and G. Zhang, Sharp affine Lp Sobolev inequalities, J. Diff. Geom., 2002, 62, 17–38.

    Google Scholar

    [31] E. Lutwak, D. Yang and G. Zhang, The Brunn-Minkowski-Firey inequality for nonconvex sets, Adv. Appl. Math., 2012, 48, 407–413. doi: 10.1016/j.aam.2011.11.003

    CrossRef Google Scholar

    [32] E. Lutwak, D. Yang and G. Zhang, Orlicz projection bodies, Adv. Math., 2010, 223, 220–242. doi: 10.1016/j.aim.2009.08.002

    CrossRef Google Scholar

    [33] E. Lutwak, D. Yang and G. Zhang, Orlicz centroid bodies, J. Diff. Geom., 2010, 84, 365–387.

    Google Scholar

    [34] L. Parapatits, SL(n)-Covariant Lp-Minkowski Valuations, J. Lond. Math. Soc., 2014, 89, 397–414. doi: 10.1112/jlms/jdt068

    CrossRef Google Scholar

    [35] L. Parapatits, SL(n)-Contravariant Lp-Minkowski Valuations, Trans. Amer. Math. Soc., 2014, 366, 1195–1211.

    Google Scholar

    [36] M. Rao and Z. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.

    Google Scholar

    [37] R. Schneider, Boundary structure and curvature of convex bodies, Contributions to Geometry, Birkhäuser, Basel, 1979, 13–59.

    Google Scholar

    [38] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993.

    Google Scholar

    [39] C. Schütt and E. Werner, Surface bodies and p-affine surface area, Adv. Math., 2004, 187, 98–145. doi: 10.1016/j.aim.2003.07.018

    CrossRef Google Scholar

    [40] W. Wang, W. Shi and S. Ye, Dual mixed Orlicz-Brunn-Minkowski inequality and dual Orlicz mixed quermassintegrals, Indaga. Math., 2017, 28, 721–735. doi: 10.1016/j.indag.2017.04.001

    CrossRef Google Scholar

    [41] E. Werner, Rényi divergence and Lp-affine surface area for convex bodies, Adv. Math., 2012, 230, 1040–1059. doi: 10.1016/j.aim.2012.03.015

    CrossRef Google Scholar

    [42] E. Werner and D. Ye, New Lp affine isoperimetric inequalities, Adv. Math., 2008, 218, 762–780. doi: 10.1016/j.aim.2008.02.002

    CrossRef Google Scholar

    [43] D. Xi, H. Jin and G. Leng, The Orlicz Brunn-Minkwski inequality, Adv. Math., 2014, 260, 350–374. doi: 10.1016/j.aim.2014.02.036

    CrossRef Google Scholar

    [44] D. Xi and G. Leng, Dar's conjecture and the log-Brunn-Minkowski inequality, J. Diff. Geom, 2016, 103, 145–189.

    Google Scholar

    [45] D. Ye, Dual Orlicz-Brunn-Minkowski theory: dual Orlicz Lφ affine and geominimal surface areas, J. Math. Anal. Appl., 2016, 443, 352–371. doi: 10.1016/j.jmaa.2016.05.027

    CrossRef Google Scholar

    [46] C. Zhao, On mixed affine quermassintegrals, Balkan J. Geom. Appl., 2018, 23(2), 76–96.

    Google Scholar

    [47] C. Zhao, Orlicz dual mixed volumes, Results Math., 2015, 68, 93–104. doi: 10.1007/s00025-014-0424-0

    CrossRef Google Scholar

    [48] C. Zhao, Orlicz-Brunn-Minkowski inequality for radial Blaschke-Minkowski homomorphisms, Quaestiones Math., 2018, 41(7), 937–950. doi: 10.2989/16073606.2017.1417336

    CrossRef Google Scholar

    [49] C. Zhao, Orlicz dual affine quermassintegrals, Forum Math., 2018, 30(4), 929– 945. doi: 10.1515/forum-2017-0174

    CrossRef Google Scholar

    [50] C. Zhao, Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes, J. Func. Spaces, 2018, 2018, Article ID 9752178, pages 17.

    Google Scholar

    [51] C. Zhao, The log-Aleksandrov–Fenchel inequality, Mediterr. J. Math., 2020, 17, 96. doi: 10.1007/s00009-020-01521-7

    CrossRef Google Scholar

    [52] C. Zhao, Orlicz mixed affine surface areas, Balkan J. Geom. Appl., 2019, 24(2), 100–118.

    Google Scholar

    [53] C. Zhao, The mixed affine quermassintegrals, arXiv: submit/3350709 [math. GM] 2 Sep 2020.

    Google Scholar

    [54] G. Zhu, The Orlicz centroid inequality for star bodies, Adv. Appl. Math., 2012, 48, 432–445. doi: 10.1016/j.aam.2011.11.001

    CrossRef Google Scholar

    [55] D. Zou, Affine extremum problems in the Orlicz Brunn-Minkowski theory, PhD thesis (in chinese), Shanghai University, Shanghai, 2015, 91–106.

    Google Scholar

Article Metrics

Article views(2745) PDF downloads(339) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint