2020 Volume 10 Issue 5
Article Contents

Ran-Ran Zhang, Zhi-Bo Huang. ENTIRE SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS OF MALMQUIST TYPE[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1720-1740. doi: 10.11948/20190176
Citation: Ran-Ran Zhang, Zhi-Bo Huang. ENTIRE SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS OF MALMQUIST TYPE[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1720-1740. doi: 10.11948/20190176

ENTIRE SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS OF MALMQUIST TYPE

  • Corresponding author: Email: huangzhibo@scnu.edu.cn(Z. Huang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11801093, 11871260), National Science Foundation of Guangdong (2018A030313508) and Characteristic Innovation Project (Natural Science) of Guangdong Province(2019KTSCX119)
  • The celebrated Malmquist theorem states that a differential equation, which admits a transcendental meromorphic solution, reduces into a Riccati differential equation. Motivated by the integrability of difference equations, this paper investigates the delay differential equations of form $ w(z+1)-w(z-1)+a(z)\frac{w'(z)}{w(z)} = R(z, w(z))(*), $ where $ R(z, w(z)) $ is an irreducible rational function in $ w(z) $ with rational coefficients and $ a(z) $ is a rational function. We characterize all reduced forms when the equation $ (*) $ admits a transcendental entire solution with hyper-order less than one. When we compare with the results obtained by Halburd and Korhonen[Proc. Amer. Math. Soc. 145, no.6 (2017)], we obtain the reduced forms without the assumptions that the denominator of rational function $ R(z, w(z)) $ has roots that are nonzero rational functions in $ z $. The value distribution and forms of transcendental entire solutions for the reduced delay differential equations are studied. The existence of finite iterated order entire solutions of the Kac-van Moerbeke delay differential equation is also detected.
    MSC: 30D35, 34M05
  • 加载中
  • [1] M. Ablowitz, R. G. Halburd and B. Herbst, On the extension of Painlevé property to difference equations, Nonlinearity, 2000, 13(3), 889-905. doi: 10.1088/0951-7715/13/3/321

    CrossRef Google Scholar

    [2] L. G. Bernal, On growth k-order of solutions of a complex homogeneous linear differential equations, Proc. Amer. Math. Soc., 1987, 101(2), 317-322.

    Google Scholar

    [3] Z. Chen and K. H. Shon, On growth of meromorphic solutions for linear difference equations, Abstr. Appl. Anal., 2013. DOI:10.1155/2013/619296.

    CrossRef Google Scholar

    [4] Y. M. Chiang and S. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 2008, 16(1), 105-129. doi: 10.1007/s11139-007-9101-1

    CrossRef $f(z+\eta)$ and difference equations in the complex plane" target="_blank">Google Scholar

    [5] A. A. Gol'dberg and I. V. Ostrovskii, Distribution of Values of Meromorphic Functions, Nauka, Moscow, 1970.

    Google Scholar

    [6] B. Grammaticos, A. Ramani and I. C. Moreira, Dealy differential equations and the Painlevé transcendents, Phy. A, 1993, 196(4), 574-590. doi: 10.1016/0378-4371(93)90035-3

    CrossRef Google Scholar

    [7] F. Gross, Factorization of Meromorphic Functions, U.S. Government Printing Office, Washington D. C., 1972.

    Google Scholar

    [8] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314(2), 477-487. doi: 10.1016/j.jmaa.2005.04.010

    CrossRef Google Scholar

    [9] R. G. Halburd and R. J. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. London Math. Soc., 2007, 94(2), 443-474. doi: 10.1112/plms/pdl012

    CrossRef Google Scholar

    [10] R. G. Halburd, R. J. Korhonen and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc., 2014, 366(8), 4267-4298. doi: 10.1090/S0002-9947-2014-05949-7

    CrossRef Google Scholar

    [11] R. G. Halburd and R. J. Korhonen, Growth of meromorphic solutions of delay differential equations, Proc. Amer. Math. Soc., 2017, 145(6), 2513-2526. doi: 10.1090/proc/13559

    CrossRef Google Scholar

    [12] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

    Google Scholar

    [13] Y. He and X. Xiao, Algebroid Functions and Ordinary Differential Equations, Science Press(in Chinese), Beijing, 1988.

    Google Scholar

    [14] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and K. Tohge, Complex difference equations of Malmquist type, Comput. Methods Funct. Theory, 2001, 1(1), 27-39.

    Google Scholar

    [15] Z. Huang, Z. Chen and Q. Li, On properties of meromorphic solutions for complex difference equation of Malmquist type, Acta Math. Sci., Ser. B, 2013, 33(4), 1141-1152. doi: 10.1016/S0252-9602(13)60070-3

    CrossRef Google Scholar

    [16] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.

    Google Scholar

    [17] I. Laine and C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc., 2007, 76(3), 556-566. doi: 10.1112/jlms/jdm073

    CrossRef Google Scholar

    [18] J. Malmquist, Sur les fonctions a un nombre fini de braches définies par les équations différentielles du premier ordre (French), Acta Math., 1913, 36(1), 297-343.

    Google Scholar

    [19] G. R. W. Quispel, H. W. Capel and R. Sahadevan, Continuous symmetries of differential-difference equations:the Kac-van Moerbeke equation and Painlevé reduction, Phys. Lett. A, 1992, 170(5), 379-383. doi: 10.1016/0375-9601(92)90891-O

    CrossRef Google Scholar

    [20] J. Rieppo, Malmquist-type results for difference equations with periodic coefficients, Comput.Methods Funct. Theory, 2015, 15(3), 449-457. doi: 10.1007/s40315-015-0109-z

    CrossRef Google Scholar

    [21] N. Steinmetz, Eigenschaften eindeutiger Lösungen gewöhnlicher Differentialgleichungen im Komplexen, Karlsruhe, 1978.

    Google Scholar

    [22] G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea, New York, 1949.

    Google Scholar

    [23] C. M. Viallet, Algebraic entropy for differential-delay equations, 2014, arXiv: 1408: 6161.

    Google Scholar

    [24] J. M. Whittaker, Interpolatory Function Theorey. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, No. 33, 1935.

    Google Scholar

    [25] C. Yang and H. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003.

    Google Scholar

    [26] J. Zhang and J. Zhang, Meromorphic solutions to complex difference and q-difference equations of Malmquist type, Electron. J. Differential Equ., 2014, 2014(16), 1-11.

    Google Scholar

    [27] R. Zhang and Z. Huang, Meromorphic solutions of a complex difference equation of Malmquist type, Bull. Korean Math. Soc., 2014, 51(6), 1735-1748. doi: 10.4134/BKMS.2014.51.6.1735

    CrossRef Google Scholar

Article Metrics

Article views(2779) PDF downloads(646) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint