Citation: | Ran-Ran Zhang, Zhi-Bo Huang. ENTIRE SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS OF MALMQUIST TYPE[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1720-1740. doi: 10.11948/20190176 |
[1] | M. Ablowitz, R. G. Halburd and B. Herbst, On the extension of Painlevé property to difference equations, Nonlinearity, 2000, 13(3), 889-905. doi: 10.1088/0951-7715/13/3/321 |
[2] | L. G. Bernal, On growth k-order of solutions of a complex homogeneous linear differential equations, Proc. Amer. Math. Soc., 1987, 101(2), 317-322. |
[3] | Z. Chen and K. H. Shon, On growth of meromorphic solutions for linear difference equations, Abstr. Appl. Anal., 2013. DOI:10.1155/2013/619296. |
[4] |
Y. M. Chiang and S. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 2008, 16(1), 105-129. doi: 10.1007/s11139-007-9101-1
CrossRef $f(z+\eta)$ and difference equations in the complex plane" target="_blank">Google Scholar |
[5] | A. A. Gol'dberg and I. V. Ostrovskii, Distribution of Values of Meromorphic Functions, Nauka, Moscow, 1970. |
[6] | B. Grammaticos, A. Ramani and I. C. Moreira, Dealy differential equations and the Painlevé transcendents, Phy. A, 1993, 196(4), 574-590. doi: 10.1016/0378-4371(93)90035-3 |
[7] | F. Gross, Factorization of Meromorphic Functions, U.S. Government Printing Office, Washington D. C., 1972. |
[8] | R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314(2), 477-487. doi: 10.1016/j.jmaa.2005.04.010 |
[9] | R. G. Halburd and R. J. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. London Math. Soc., 2007, 94(2), 443-474. doi: 10.1112/plms/pdl012 |
[10] | R. G. Halburd, R. J. Korhonen and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc., 2014, 366(8), 4267-4298. doi: 10.1090/S0002-9947-2014-05949-7 |
[11] | R. G. Halburd and R. J. Korhonen, Growth of meromorphic solutions of delay differential equations, Proc. Amer. Math. Soc., 2017, 145(6), 2513-2526. doi: 10.1090/proc/13559 |
[12] | W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964. |
[13] | Y. He and X. Xiao, Algebroid Functions and Ordinary Differential Equations, Science Press(in Chinese), Beijing, 1988. |
[14] | J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and K. Tohge, Complex difference equations of Malmquist type, Comput. Methods Funct. Theory, 2001, 1(1), 27-39. |
[15] | Z. Huang, Z. Chen and Q. Li, On properties of meromorphic solutions for complex difference equation of Malmquist type, Acta Math. Sci., Ser. B, 2013, 33(4), 1141-1152. doi: 10.1016/S0252-9602(13)60070-3 |
[16] | I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993. |
[17] | I. Laine and C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc., 2007, 76(3), 556-566. doi: 10.1112/jlms/jdm073 |
[18] | J. Malmquist, Sur les fonctions a un nombre fini de braches définies par les équations différentielles du premier ordre (French), Acta Math., 1913, 36(1), 297-343. |
[19] | G. R. W. Quispel, H. W. Capel and R. Sahadevan, Continuous symmetries of differential-difference equations:the Kac-van Moerbeke equation and Painlevé reduction, Phys. Lett. A, 1992, 170(5), 379-383. doi: 10.1016/0375-9601(92)90891-O |
[20] | J. Rieppo, Malmquist-type results for difference equations with periodic coefficients, Comput.Methods Funct. Theory, 2015, 15(3), 449-457. doi: 10.1007/s40315-015-0109-z |
[21] | N. Steinmetz, Eigenschaften eindeutiger Lösungen gewöhnlicher Differentialgleichungen im Komplexen, Karlsruhe, 1978. |
[22] | G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea, New York, 1949. |
[23] | C. M. Viallet, Algebraic entropy for differential-delay equations, 2014, arXiv: 1408: 6161. |
[24] | J. M. Whittaker, Interpolatory Function Theorey. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, No. 33, 1935. |
[25] | C. Yang and H. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003. |
[26] | J. Zhang and J. Zhang, Meromorphic solutions to complex difference and q-difference equations of Malmquist type, Electron. J. Differential Equ., 2014, 2014(16), 1-11. |
[27] | R. Zhang and Z. Huang, Meromorphic solutions of a complex difference equation of Malmquist type, Bull. Korean Math. Soc., 2014, 51(6), 1735-1748. doi: 10.4134/BKMS.2014.51.6.1735 |