[1]
|
T. Aziz and M. Kumar, A fourth-order finite-difference method based on nonuniform mesh for a class of singular two-point boundary value problems, J. Comput. Appl. Math., 2001, 136(1-2), 337-342. doi: 10.1016/S0377-0427(00)00624-5
CrossRef Google Scholar
|
[2]
|
J. Cartwright, V. Eguiluz, E. Hernandez-Garcia and O. Piro, Dynamics of elastic excitable media, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1999, 9(11), 2197-2202. doi: 10.1142/S0218127499001620
CrossRef Google Scholar
|
[3]
|
M. M. Chawla, A fourth-order tridiagonal finite difference method for general non-linear two-point boundary value problems with mixed boundary conditions, IMA J. Appl. Math., 1978, 21(1), 83-93. doi: 10.1093/imamat/21.1.83
CrossRef Google Scholar
|
[4]
|
M. M. Chawla, A sixth order tri-diagonal finite difference method for general non-linear two point boundary value problems, IMA J. Appl. Math, 1979, 24(1), 35-42. doi: 10.1093/imamat/24.1.35
CrossRef Google Scholar
|
[5]
|
M. M. Chawla, A fourth-order finite difference method based on uniform mesh for singular two-point boundary value problem, J. Comput. Appl. Math., 1987, 17(3), 359-364. doi: 10.1016/0377-0427(87)90112-9
CrossRef Google Scholar
|
[6]
|
J. S.R. Chisholm and A. K. Common, A class of second-order differential equations and related first-order systems, J. Phys. A: Math. Gen., 1987, 20(16), 5459-5472. doi: 10.1088/0305-4470/20/16/020
CrossRef Google Scholar
|
[7]
|
M. Dehgan, A. Mohebbi, and Z. Asgari, Fourth-order compact solution of the non-linear Klein -Gordon equation, Numer. Algor., 2009, 52(4), 523-540. doi: 10.1007/s11075-009-9296-x
CrossRef Google Scholar
|
[8]
|
M. Dehghan and M. Tatari, Finding approximate solutions for a class of thirdorder non-linear boundary value problems via the decomposition method of a domain, Int. J. Comput. Math, 2010, 87(6), 1256-1263. doi: 10.1080/00207160802270853
CrossRef Google Scholar
|
[9]
|
A. R. Elcrat, On the radial flow of a viscous fluid between porous disks, Arch. Ration. Mech. Anal, 1976, 61(1), 91-96. doi: 10.1007/BF00251865
CrossRef Google Scholar
|
[10]
|
D. J. Evans and R. K. Mohanty, Alternating group explicit method for the numerical solution of non-linear singular two point boundary value problems using a fourth order finite difference method, International Journal of Computer Mathematics, 2002, 79(10), 1121-1133. doi: 10.1080/00207160212704
CrossRef Google Scholar
|
[11]
|
F. Ghomanjani and S. Shateyi, Alternative methods for solving nonlinear twopoint boundary value problems, Open Physics, 2018, 16(1), 371-374. doi: 10.1515/phys-2018-0050
CrossRef Google Scholar
|
[12]
|
V. V. Gobulev, Lectures on Analytical Theory of Differential Equations. Moscow, Gostekhizdat, 1950.
Google Scholar
|
[13]
|
K. Guckenheimer, J. Hoffman and W. Weckesser, Numerical computation of canards. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2000, 10(12), 2669-2687. doi: 10.1142/S0218127400001742
CrossRef Google Scholar
|
[14]
|
L. A. Hageman and D. M. Young, Applied Iterative Methods, Dover Publications, New York, 2004.
Google Scholar
|
[15]
|
M. K. Jain, S. R. K. Iyengar, and G. S. Subramanyam, Variable mesh methods for the numerical-solution of 2-point singular perturbation problems, Comput. Meth. Appl. Mech. Eng., 1984, 42(3), 273-286. doi: 10.1016/0045-7825(84)90009-4
CrossRef Google Scholar
|
[16]
|
H. B. Keller, Numerical Methods for two points boundary value problems, Waltham Mass: Blaisdell Pub. Co, New York, 1968.
Google Scholar
|
[17]
|
R. K. Mohanty, A family of variable mesh methods for the estimates of (du/dr) and the solution of non-linear two point boundary value problems with singularity, J. Comput. and Appl. Math., 2005, 182(1), 173-187. doi: 10.1016/j.cam.2004.11.045
CrossRef Google Scholar
|
[18]
|
R. K. Mohanty and Noopur Khosla, A third order accurate variable mesh TAGE iterative method for the numerical solution of two point non-linear singular boundary value problems, Int. J. Comp. Math., 2005, 82(10), 1261-1273.
Google Scholar
|
[19]
|
R. K. Mohanty, A class of non-uniform mesh three point arithmetic average discretization for y'' = f(x, y, y')and the estimates of y', J. Appl. Math. Comput., 2006, 183(1), 477-485. doi: 10.1016/j.amc.2006.05.071
CrossRef Google Scholar
|
[20]
|
R. K. Mohanty and Noopur Khosla, Application of TAGE iterative algorithms to an efficient third order arithmetic average variable mesh discretization for two point non-linear boundary value problems, Appl. Math. Comput., 2006, 172(1), 148-162.
Google Scholar
|
[21]
|
R. K. Mohanty, N. Jha, and V. Chauhan, Arithmetic average geometric mesh discretizations for fourth and sixth order nonlinear two point boundary value problems, Neural Parallel Sci. Comput., 2013, 21(3-4), 393-410.
Google Scholar
|
[22]
|
R.K. Mohanty, G. Manchanda and A. Khan, Operator compact exponential approximation for the solution of system of 2D second order quasi-linear elliptic partial differential equations, 2019. DOI: 10.1186/s13662-019-1968-9.
Google Scholar
|
[23]
|
R.K. Mohanty, G. Manchanda and A. Khan, Compact half step approximation in exponential form for 2D second order quasi-linear elliptic partial differential equations, J. Differ. Eqs. Applics., 2019, 25, 716-749. doi: 10.1080/10236198.2019.1624737
CrossRef Google Scholar
|
[24]
|
R. K. Mohanty, G. Manchanda, A. Khan and G. Khurana A new high accuracy method in exponential form based on off-step discretization for non-linear two point boundary value problems, J. Differ. Eqs. Appl., 2020, 26(2), 171-202. doi: 10.1080/10236198.2019.1710140
CrossRef Google Scholar
|
[25]
|
D. O. Regan, Solvability of some fourth and higher order singular boundary value problems, J. Math. Anal. Appl., 1990, 161, 78-116.
Google Scholar
|
[26]
|
P. Roul and D. Biswal, A new numerical approach for solving a class of singular two-point boundary value problems, Numer. Algor., 2017, 75, 531-552. doi: 10.1007/s11075-016-0210-z
CrossRef Google Scholar
|
[27]
|
S. S. Siddiqi and E. H. Twizell, Spline solutions of linear sixth order boundary value problems, Int. J. Comput. Math., 1996, 60(3-4), 295-304. doi: 10.1080/00207169608804493
CrossRef Google Scholar
|
[28]
|
S. Selim, G. Elver and M. San Numerical behaviour of singular two point BVPs in a comparative way, Int. J. Optimiz. Contrl.: Th. Applics., 2017, 7(3), 288-292.
Google Scholar
|
[29]
|
A. I. Selverston and P. F. Rowat, Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network, J. Neurophysiol., 1993, 70(3), 1030-1053. doi: 10.1152/jn.1993.70.3.1030
CrossRef Google Scholar
|
[30]
|
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011.
Google Scholar
|
[31]
|
E. H. Twizell and S. I. A. Tirmizi, Multiderivative methods for non-linear second-order boundary value problems, J. Comput. Appl. Math., 1987, 17, 299-307. doi: 10.1016/0377-0427(87)90107-5
CrossRef Google Scholar
|
[32]
|
R. A. Usmani, Finite Difference Methods for a certain two point boundary value problem, Indian J. Pure Appl. Math., 1983, 14(3), 398-411.
Google Scholar
|
[33]
|
R. A. Usmani, The use of quartic splines in the numerical solution of a fourth -order boundary value problem, J. Comput. Appl. Math., 1992, 44(2), 187-200. doi: 10.1016/0377-0427(92)90010-U
CrossRef Google Scholar
|
[34]
|
R. S. Varga, Matrix Iterative Analysis, Springer, Berlin, Germany, 2000.
Google Scholar
|
[35]
|
M. Xu, J. Niu, Y. Lin and Q. Xue.Numerical solution of non linear singular boundary value problems, J. Comput. Appl. Math., 2018, 331, 42-51. doi: 10.1016/j.cam.2017.09.040
CrossRef Google Scholar
|
[36]
|
H. Zhu, J. Niu, R. Zhang and Y. Lin A new approach for solving nonlinear singular boundary value problems, Math. Model. Anal., 2018, 23(1), 33-43.
Google Scholar
|