[1]
|
E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., 1998, 227(1), 81-97.
Google Scholar
|
[2]
|
D. Baleanu, M. Inc, A. Yusuf and A.I. Aliyu, Time fractional third-order evolution equation: Symmetry analysis, explicit solutions, and conservation laws, J. Comput. Nonlin. Dyn., 2018, 13, 021011. doi: 10.1115/1.4037765
CrossRef Google Scholar
|
[3]
|
G.W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, Heidelburg, 2002.
Google Scholar
|
[4]
|
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2015, 1, 73-85.
Google Scholar
|
[5]
|
Y. Chen, Z. Yan and D. Mihalache, Stable flat-top solitons and peakons in the PT-symmetric $\delta$-signum potentials and nonlinear media, Chaos., 2019, 29(8), 083108. doi: 10.1063/1.5100294
CrossRef Google Scholar
|
[6]
|
G.S.F. Frederico and D.F.M. Torres, Fractional conservation laws in optimal control theory, Nonlin. Dyn., 2008, 53(3), 215-222.
Google Scholar
|
[7]
|
R.K. Gazizov, A.A. Kasatkin and S.Y. Lukashchuk, Symmetry properties of fractional diffusion equations Physica Scripta, 2009, 2009(T136): 014016.
Google Scholar
|
[8]
|
R.K. Gazizov, A.A. Kasatkin and S.Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestnik Usatu, 2007, 9(3), 21.
Google Scholar
|
[9]
|
L. Gao, X. Zhao, Y. Zi, J. Yu and X. Lü, Resonant behavior of multiple wave solutions to a Hirota bilinear equation, Comput. Math. Appl., 2016, 72(5), 1225-1229. doi: 10.1016/j.camwa.2016.06.008
CrossRef Google Scholar
|
[10]
|
L. Gao, Y. Zi, Y. Yin and X. Lü, Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation, Nonlin. Dyn., 2017, 89(3), 2233-2240.
Google Scholar
|
[11]
|
R.K. Gazizov, N.H. Ibragimov and S.Y. Lukashchuk, Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlin. Sci. Numer. Simul., 2015, 23(1-3), 153-163. doi: 10.1016/j.cnsns.2014.11.010
CrossRef Google Scholar
|
[12]
|
Y. Hua, B. Guo, W. Ma and X. Lü, Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves, Appl. Math. Model., 2019, 74, 184-198. doi: 10.1016/j.apm.2019.04.044
CrossRef Google Scholar
|
[13]
|
N. Habibi, E. Lashkarian, E. Dastranj and S.R. Hejazi, Lie symmetry analysis, conservation laws and numerical approximations of time-fractional Fokker-Planck equations for special stochastic process in foreign exchange markets, Phys. A: Stat. Mech. Appl., 2019, 513, 750-766. doi: 10.1016/j.physa.2018.08.155
CrossRef Google Scholar
|
[14]
|
N.H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333(1), 311-328.
Google Scholar
|
[15]
|
H. Jafari, N. Kadkhoda and D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlin. Dyn., 2015, 81(3), 1569-1574. doi: 10.1007/s11071-015-2091-4
CrossRef Google Scholar
|
[16]
|
A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
Google Scholar
|
[17]
|
V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman, Longman, Harlow & Wiley, New York, 1994.
Google Scholar
|
[18]
|
M. Khorshid, M. Nadjafikhah and H. Jafari, Fractional derivative generalization of Noether's theorem, Open. Math., 2015, 13(1), 940-947.
Google Scholar
|
[19]
|
H. Liu, Generalized symmetry classifications, integrable properties and exact solutions to the general nonlinear diffusion equations, Commun. Nonlin. Sci. Numer. Simul., 2016, 36, 21-28.
Google Scholar
|
[20]
|
J. Liu and Y. Zhang, Analytical study of exact solutions of the nonlinear Korteweg-de Vries equation with space-time fractional derivatives, Mode. Phys. Lett. B., 2018, 1850012.
Google Scholar
|
[21]
|
S. Lou and H. Ma, Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method, J. Phys. A: Math. Gen., 2005, 38(7), 129-137. doi: 10.1088/0305-4470/38/7/L04
CrossRef Google Scholar
|
[22]
|
J. Liu, X. Yang and Y. Feng, On integrability of the time fractional nonlinear heat conduction equation, J. Geom. Phys., 2019, 144, 190-198. doi: 10.1016/j.geomphys.2019.06.004
CrossRef Google Scholar
|
[23]
|
J. Liu, X. Yang, M. Cheng, Y. Feng and Y. Zhang, Abound rogue wave type solutions to the extended (3+1)-dimensional Jimbo-Miwa equation, Comput. Math. Appl., 2019, 78, 1947-1959. doi: 10.1016/j.camwa.2019.03.034
CrossRef Google Scholar
|
[24]
|
X. Lü, F. Lin and F. Qi, Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton solutions, Appl. Math. Model., 2015, 39(12), 3221-3226. doi: 10.1016/j.apm.2014.10.046
CrossRef Google Scholar
|
[25]
|
S.Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlin. Dyn., 2015, 80(1-2), 791-802.
Google Scholar
|
[26]
|
N. Laskin, Fractional schrödinger equation, Phys. Rev. E., 2002, 66(5), 056108. doi: 10.1103/PhysRevE.66.056108
CrossRef Google Scholar
|
[27]
|
K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential equations, Wiley, New York, 1993.
Google Scholar
|
[28]
|
Z. Odibat, S. Momani and X. Hang, A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations, Appl. Math. Model., 2010, 34(3), 593-600.
Google Scholar
|
[29]
|
P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, Heidelberg, 1986.
Google Scholar
|
[30]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
Google Scholar
|
[31]
|
M.U. Rehman and R.A. Khan, The Legendre wavelet method for solving fractional differential equations, Commun. Nonlin. Sci. Numer. Simul., 2011, 92(6), 1275-1291.
Google Scholar
|
[32]
|
W. Rui and X. Zhang, Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation, Commun. Nonlin. Sci. Numer. Simul., 2016, 34, 38-44. doi: 10.1016/j.cnsns.2015.10.004
CrossRef Google Scholar
|
[33]
|
R. Sahadevan and T. Bakkyaraj, Invariant analysis of time fractional generalized Burgers and Kortewegde Vries equations, J. Math. Anal. Appl., 2012, 393(2), 341-347.
Google Scholar
|
[34]
|
S. Samko, A.A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach science, Yverdon, Switzerland, 1993.
Google Scholar
|
[35]
|
S. Sahoo and S.S. Ray, Invariant analysis with conservation laws for the time fractional Drinfeld-Sokolov-Satsuma-Hirota equations, Chaos. Solitons. Fract., 2017, 104, 725-733. doi: 10.1016/j.chaos.2017.09.031
CrossRef Google Scholar
|
[36]
|
X. Wang, S. Tian, C. Qin and T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, EPL., 2016, 114(2), 20003. doi: 10.1209/0295-5075/114/20003
CrossRef Google Scholar
|
[37]
|
X. Wang, S. Tian, C. Qin and T. Zhang, Lie symmetry analysis, conservation laws and analytical solutions of a time-fractional generalized KdV-type equation, J. Nonlin. Math. Phys., 2017, 24(4), 516-530.
Google Scholar
|
[38]
|
X. Wang, S. Tian, C. Qin and T. Zhang, Lie symmetry analysis, analytical solutions, and conservation laws of the generalised Whitham-Broer-Kaup-Like equations, Z. Naturforsch. A., 2017, 72(3), 269-279. doi: 10.1515/zna-2016-0389
CrossRef Google Scholar
|
[39]
|
H. Xu, W. Ruan and X. Lü, Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior, Appl. Math. Lett., 2020, 99, 105976. doi: 10.1016/j.aml.2019.07.007
CrossRef Google Scholar
|
[40]
|
X. Yang, F. Gao and H.M. Srivastava, A new computational approach for solving nonlinear local fractional PDEs, J. Comput. Appl. Math., 2018, 339, 285-296. doi: 10.1016/j.cam.2017.10.007
CrossRef Google Scholar
|
[41]
|
X.J. Yang, D. Baleanu and H.M. Srivastava, Local fractional similarity solution for the diffusion equation defined on cantor sets, Appl. Math. Lett., 2015, 47, 54-60. doi: 10.1016/j.aml.2015.02.024
CrossRef Google Scholar
|
[42]
|
X. Yang, A new integral transform operator for solving the heat-diffusion problem, Appl. Math. Lett., 2017, 64, 193-197. doi: 10.1016/j.aml.2016.09.011
CrossRef Google Scholar
|
[43]
|
X. Yang, General Fractional Derivatives: Theory, Methods and Applications, CRC Press, New York, USA, 2019.
Google Scholar
|
[44]
|
Y. Yin, W. Ma, J. Liu and X. Lü, Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 2018, 76(6), 1275-1283.
Google Scholar
|