2020 Volume 10 Issue 3
Article Contents

Jian-Gen Liu, Xiao-Jun Yang, Yi-Ying Feng, Hong-Yi Zhang. ANALYSIS OF THE TIME FRACTIONAL NONLINEAR DIFFUSION EQUATION FROM DIFFUSION PROCESS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1060-1072. doi: 10.11948/20190186
Citation: Jian-Gen Liu, Xiao-Jun Yang, Yi-Ying Feng, Hong-Yi Zhang. ANALYSIS OF THE TIME FRACTIONAL NONLINEAR DIFFUSION EQUATION FROM DIFFUSION PROCESS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1060-1072. doi: 10.11948/20190186

ANALYSIS OF THE TIME FRACTIONAL NONLINEAR DIFFUSION EQUATION FROM DIFFUSION PROCESS

  • Under investigation in this paper is a time fractional nonlinear diffusion equation which can be utilized to express various diffusion processes. The symmetry of this considered equation has been obtained via fractional Lie group approach with the sense of Riemann-Liouville (R-L) fractional derivative. Based on the symmetry, this equation can be changed into an ordinary differential equation of fractional order. Moreover, some new invariant solutions of this considered equation are found. Lastly, utilising the Noether theorem and the general form of Noether type theorem, the conservation laws are yielded to the time fractional nonlinear diffusion equation, respectively. Our discovery that there are no conservation laws under the general form of Noether type theorem case. This result tells us the symmetry of this equation is not variational symmetry of the considered functional. These rich results can give us more information to interpret this equation.
    MSC: 22E70, 35D99, 35K05, 35L65, 35Q51
  • 加载中
  • [1] E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., 1998, 227(1), 81-97.

    Google Scholar

    [2] D. Baleanu, M. Inc, A. Yusuf and A.I. Aliyu, Time fractional third-order evolution equation: Symmetry analysis, explicit solutions, and conservation laws, J. Comput. Nonlin. Dyn., 2018, 13, 021011. doi: 10.1115/1.4037765

    CrossRef Google Scholar

    [3] G.W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, Heidelburg, 2002.

    Google Scholar

    [4] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2015, 1, 73-85.

    Google Scholar

    [5] Y. Chen, Z. Yan and D. Mihalache, Stable flat-top solitons and peakons in the PT-symmetric $\delta$-signum potentials and nonlinear media, Chaos., 2019, 29(8), 083108. doi: 10.1063/1.5100294

    CrossRef Google Scholar

    [6] G.S.F. Frederico and D.F.M. Torres, Fractional conservation laws in optimal control theory, Nonlin. Dyn., 2008, 53(3), 215-222.

    Google Scholar

    [7] R.K. Gazizov, A.A. Kasatkin and S.Y. Lukashchuk, Symmetry properties of fractional diffusion equations Physica Scripta, 2009, 2009(T136): 014016.

    Google Scholar

    [8] R.K. Gazizov, A.A. Kasatkin and S.Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestnik Usatu, 2007, 9(3), 21.

    Google Scholar

    [9] L. Gao, X. Zhao, Y. Zi, J. Yu and X. Lü, Resonant behavior of multiple wave solutions to a Hirota bilinear equation, Comput. Math. Appl., 2016, 72(5), 1225-1229. doi: 10.1016/j.camwa.2016.06.008

    CrossRef Google Scholar

    [10] L. Gao, Y. Zi, Y. Yin and X. Lü, Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation, Nonlin. Dyn., 2017, 89(3), 2233-2240.

    Google Scholar

    [11] R.K. Gazizov, N.H. Ibragimov and S.Y. Lukashchuk, Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlin. Sci. Numer. Simul., 2015, 23(1-3), 153-163. doi: 10.1016/j.cnsns.2014.11.010

    CrossRef Google Scholar

    [12] Y. Hua, B. Guo, W. Ma and X. Lü, Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves, Appl. Math. Model., 2019, 74, 184-198. doi: 10.1016/j.apm.2019.04.044

    CrossRef Google Scholar

    [13] N. Habibi, E. Lashkarian, E. Dastranj and S.R. Hejazi, Lie symmetry analysis, conservation laws and numerical approximations of time-fractional Fokker-Planck equations for special stochastic process in foreign exchange markets, Phys. A: Stat. Mech. Appl., 2019, 513, 750-766. doi: 10.1016/j.physa.2018.08.155

    CrossRef Google Scholar

    [14] N.H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333(1), 311-328.

    Google Scholar

    [15] H. Jafari, N. Kadkhoda and D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlin. Dyn., 2015, 81(3), 1569-1574. doi: 10.1007/s11071-015-2091-4

    CrossRef Google Scholar

    [16] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [17] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman, Longman, Harlow & Wiley, New York, 1994.

    Google Scholar

    [18] M. Khorshid, M. Nadjafikhah and H. Jafari, Fractional derivative generalization of Noether's theorem, Open. Math., 2015, 13(1), 940-947.

    Google Scholar

    [19] H. Liu, Generalized symmetry classifications, integrable properties and exact solutions to the general nonlinear diffusion equations, Commun. Nonlin. Sci. Numer. Simul., 2016, 36, 21-28.

    Google Scholar

    [20] J. Liu and Y. Zhang, Analytical study of exact solutions of the nonlinear Korteweg-de Vries equation with space-time fractional derivatives, Mode. Phys. Lett. B., 2018, 1850012.

    Google Scholar

    [21] S. Lou and H. Ma, Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method, J. Phys. A: Math. Gen., 2005, 38(7), 129-137. doi: 10.1088/0305-4470/38/7/L04

    CrossRef Google Scholar

    [22] J. Liu, X. Yang and Y. Feng, On integrability of the time fractional nonlinear heat conduction equation, J. Geom. Phys., 2019, 144, 190-198. doi: 10.1016/j.geomphys.2019.06.004

    CrossRef Google Scholar

    [23] J. Liu, X. Yang, M. Cheng, Y. Feng and Y. Zhang, Abound rogue wave type solutions to the extended (3+1)-dimensional Jimbo-Miwa equation, Comput. Math. Appl., 2019, 78, 1947-1959. doi: 10.1016/j.camwa.2019.03.034

    CrossRef Google Scholar

    [24] X. Lü, F. Lin and F. Qi, Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton solutions, Appl. Math. Model., 2015, 39(12), 3221-3226. doi: 10.1016/j.apm.2014.10.046

    CrossRef Google Scholar

    [25] S.Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlin. Dyn., 2015, 80(1-2), 791-802.

    Google Scholar

    [26] N. Laskin, Fractional schrödinger equation, Phys. Rev. E., 2002, 66(5), 056108. doi: 10.1103/PhysRevE.66.056108

    CrossRef Google Scholar

    [27] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential equations, Wiley, New York, 1993.

    Google Scholar

    [28] Z. Odibat, S. Momani and X. Hang, A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations, Appl. Math. Model., 2010, 34(3), 593-600.

    Google Scholar

    [29] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, Heidelberg, 1986.

    Google Scholar

    [30] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [31] M.U. Rehman and R.A. Khan, The Legendre wavelet method for solving fractional differential equations, Commun. Nonlin. Sci. Numer. Simul., 2011, 92(6), 1275-1291.

    Google Scholar

    [32] W. Rui and X. Zhang, Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation, Commun. Nonlin. Sci. Numer. Simul., 2016, 34, 38-44. doi: 10.1016/j.cnsns.2015.10.004

    CrossRef Google Scholar

    [33] R. Sahadevan and T. Bakkyaraj, Invariant analysis of time fractional generalized Burgers and Kortewegde Vries equations, J. Math. Anal. Appl., 2012, 393(2), 341-347.

    Google Scholar

    [34] S. Samko, A.A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach science, Yverdon, Switzerland, 1993.

    Google Scholar

    [35] S. Sahoo and S.S. Ray, Invariant analysis with conservation laws for the time fractional Drinfeld-Sokolov-Satsuma-Hirota equations, Chaos. Solitons. Fract., 2017, 104, 725-733. doi: 10.1016/j.chaos.2017.09.031

    CrossRef Google Scholar

    [36] X. Wang, S. Tian, C. Qin and T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, EPL., 2016, 114(2), 20003. doi: 10.1209/0295-5075/114/20003

    CrossRef Google Scholar

    [37] X. Wang, S. Tian, C. Qin and T. Zhang, Lie symmetry analysis, conservation laws and analytical solutions of a time-fractional generalized KdV-type equation, J. Nonlin. Math. Phys., 2017, 24(4), 516-530.

    Google Scholar

    [38] X. Wang, S. Tian, C. Qin and T. Zhang, Lie symmetry analysis, analytical solutions, and conservation laws of the generalised Whitham-Broer-Kaup-Like equations, Z. Naturforsch. A., 2017, 72(3), 269-279. doi: 10.1515/zna-2016-0389

    CrossRef Google Scholar

    [39] H. Xu, W. Ruan and X. Lü, Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior, Appl. Math. Lett., 2020, 99, 105976. doi: 10.1016/j.aml.2019.07.007

    CrossRef Google Scholar

    [40] X. Yang, F. Gao and H.M. Srivastava, A new computational approach for solving nonlinear local fractional PDEs, J. Comput. Appl. Math., 2018, 339, 285-296. doi: 10.1016/j.cam.2017.10.007

    CrossRef Google Scholar

    [41] X.J. Yang, D. Baleanu and H.M. Srivastava, Local fractional similarity solution for the diffusion equation defined on cantor sets, Appl. Math. Lett., 2015, 47, 54-60. doi: 10.1016/j.aml.2015.02.024

    CrossRef Google Scholar

    [42] X. Yang, A new integral transform operator for solving the heat-diffusion problem, Appl. Math. Lett., 2017, 64, 193-197. doi: 10.1016/j.aml.2016.09.011

    CrossRef Google Scholar

    [43] X. Yang, General Fractional Derivatives: Theory, Methods and Applications, CRC Press, New York, USA, 2019.

    Google Scholar

    [44] Y. Yin, W. Ma, J. Liu and X. Lü, Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 2018, 76(6), 1275-1283.

    Google Scholar

Article Metrics

Article views(3569) PDF downloads(908) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint