2020 Volume 10 Issue 4
Article Contents

Kamel Saoudi, Mouna Kratou, Eadh Al Zahrani. UNIQUENESS AND EXISTENCE OF SOLUTIONS FOR A SINGULAR SYSTEM WITH NONLOCAL OPERATOR VIA PERTURBATION METHOD[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1311-1325. doi: 10.11948/20190189
Citation: Kamel Saoudi, Mouna Kratou, Eadh Al Zahrani. UNIQUENESS AND EXISTENCE OF SOLUTIONS FOR A SINGULAR SYSTEM WITH NONLOCAL OPERATOR VIA PERTURBATION METHOD[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1311-1325. doi: 10.11948/20190189

UNIQUENESS AND EXISTENCE OF SOLUTIONS FOR A SINGULAR SYSTEM WITH NONLOCAL OPERATOR VIA PERTURBATION METHOD

  • In this work, we investigate the existence and the uniqueness of solutions for the nonlocal elliptic system involving a singular nonlinearity as follows: $ \begin{eqnarray*} \left\{\begin{array}{ll} (-\Delta_p)^su = a(x)|u|^{q-2}u +\frac{1-\alpha}{2-\alpha-\beta} c(x)|u|^{-\alpha}|v|^{1-\beta}, \quad \text{in }\Omega, \ (-\Delta_p)^s v = b(x)|v|^{q-2}v +\frac{1-\beta}{2-\alpha-\beta} c(x)|u|^{1-\alpha}|v|^{-\beta}, \quad \text{in }\Omega, \ u = v = 0 , \;\;\mbox{ in }\, \mathbb{R}^N\setminus\Omega, \end{array} \right. \end{eqnarray*} $ where $ \Omega $ is a bounded domain in $ \mathbb{R}^{n} $ with smooth boundary, $ 0<\alpha <1, $ $ 0<\beta <1, $ $ 2-\alpha -\beta <p<q\leq p_{s}^{\ast } = \frac{Np}{N-sp}, $ $ a, \, b, \, c \in C(\overline{\Omega}) $ are non-negative weight functions with compact support in $ \Omega, - $ and $ (-\Delta)^s_p $ is the fractional $ p $-laplacian operator. We use a perturbation method combine with some variationals methods in order to show the existence of a solution to the above system. We also prove the uniqueness of the solution to the system for some additional condition.
    MSC: 34B15, 37C25, 35R20
  • 加载中
  • [1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2009.

    Google Scholar

    [2] B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non local elliptic problems with the Hardy potential, Contemp. Math., 2014. DOI:10.1142/S0219199713500466.

    CrossRef Google Scholar

    [3] H. Brezis, Analyse fonctionelle, in: Théorie et Applications, Masson, Paris, 1983.

    Google Scholar

    [4] L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 2004, 37(3), 769–799.

    Google Scholar

    [5] A. Canino, L. Montoro, B. Sciunzi and M. Squassina, Nonlocal problems with singular nonlinearity, Bulletin des Sciences Mathématiques, 2017, 141 (3), 223–250. doi: 10.1016/j.bulsci.2017.01.002

    CrossRef Google Scholar

    [6] A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 2004, 295(1), 225–236.

    Google Scholar

    [7] G. Ercole and G. A. Pereira, Fractional Sobolev inequalities associated with singular problems, Mathematische Nachrichten, 2018, 291 (11–12), 1666–1685. doi: 10.1002/mana.201700302

    CrossRef Google Scholar

    [8] Y. Fang, Existence, uniqueness of positive solution to a fractional Laplacians with singular nonlinearity, arXiv preprint arXiv: 1403.3149, 2014.

    Google Scholar

    [9] A. Ghanmi and K. Saoudi, A multiplicity results for a singular problem involving the fractional p-Laplacian operator, Complex. Var. Elliptic Equ., 2016, 61(9), 1199–1216. doi: 10.1080/17476933.2016.1154548

    CrossRef Google Scholar

    [10] T. Mukherjee and K. Sreenadh, On Dirichlet problem for fractional p-Laplacian with singularnon-linearity, Advances in Nonlinear Analysis, 2019, 8 (1), 52–72.

    Google Scholar

    [11] E. D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521–573. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [12] K. Saoudi, A critical fractional elliptic equation with singular nonlinearities, Fractional Calculus and Applied Analysis, 2017, 20 (6), 1507–1530.

    Google Scholar

    [13] K. Saoudi, A singular system involving the fractional p-Laplacian operator via the Nehari manifold approach, Complex Analysis and Operator Theory, 2019, 13(3), 801–818.

    Google Scholar

    [14] K. Saoudi, S. Ghosh and D. Choudhuri, Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity, Journal of mathematical physics, 2019, 60 (10), 1–20.

    Google Scholar

Article Metrics

Article views(2433) PDF downloads(503) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint