2020 Volume 10 Issue 4
Article Contents

Changfeng Ma, Tongxin Yan. AN ITERATIVE ALGORITHM FOR SOLVING A CLASS OF GENERALIZED COUPLED SYLVESTER-TRANSPOSE MATRIX EQUATIONS OVER BISYMMETRIC OR SKEW-ANTI-SYMMETRIC MATRICES[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1282-1310. doi: 10.11948/20190184
Citation: Changfeng Ma, Tongxin Yan. AN ITERATIVE ALGORITHM FOR SOLVING A CLASS OF GENERALIZED COUPLED SYLVESTER-TRANSPOSE MATRIX EQUATIONS OVER BISYMMETRIC OR SKEW-ANTI-SYMMETRIC MATRICES[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1282-1310. doi: 10.11948/20190184

AN ITERATIVE ALGORITHM FOR SOLVING A CLASS OF GENERALIZED COUPLED SYLVESTER-TRANSPOSE MATRIX EQUATIONS OVER BISYMMETRIC OR SKEW-ANTI-SYMMETRIC MATRICES

  • This paper presents an iterative algorithm to solve a class of generalized coupled Sylvester-transpose matrix equations over bisymmetric or skew-anti-symmetric matrices. When the matrix equations are consistent, the bisymmetric or skew-anti-symmetric solutions can be obtained within finite iteration steps in the absence of round-off errors for any initial bisymmetric or skew-anti-symmetric matrices by the proposed iterative algorithm. In addition, we can obtain the least norm solution by choosing the special initial matrices. Finally, numerical examples are given to demonstrate the iterative algorithm is quite efficient. The merit of our method is that it is easy to implement.
    MSC: 65F10, 15A24
  • 加载中
  • [1] F. P. A. Beik and D. K. Salkuyeh, The coupled Sylvester-transpose matrix equations over generalized centro-symmetric matrices, Int. J. Comput. Math., 2013, 90, 1546-1566. doi: 10.1080/00207160.2012.761337

    CrossRef Google Scholar

    [2] J. K. Baksalart and R. Kala, The matrix equation AXB+CYD = E, Linear Algebra Appl, 1980, 30, 141-147. doi: 10.1016/0024-3795(80)90189-5

    CrossRef Google Scholar

    [3] L. Bao, Y. Lin and Y. Wei, A new projection method for solving large Sylvester equations, Appl. Numer. Math., 2007, 57, 521-532. doi: 10.1016/j.apnum.2006.07.005

    CrossRef Google Scholar

    [4] Z. Bai, The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation, SIAM J. Matrix Anal. Appl., 2005, 26, 1100-1114. doi: 10.1137/S0895479803434185

    CrossRef Google Scholar

    [5] B. Carpentieri, Y. Jing and T. Huang, The BiCOR and CORS iterative algorithms for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 2011, 33, 3020-3036. doi: 10.1137/100794031

    CrossRef Google Scholar

    [6] J. Cai and G. Chen, An iterative algorithm for the least squares bisymmetric solution of the matrix equations $A_1XB_1= C_1, A_2XB_2= C_2$, Math. Comput. Modelling, 2009, 50, 1237-1244. doi: 10.1016/j.mcm.2009.07.004

    CrossRef Google Scholar

    [7] B. Datta, Numerical Methods for Linear Control Systems, Elsevier Academic Press, 2004.

    Google Scholar

    [8] F. Ding and T. Chen, Hierarchical least squares identification methods for multivariable systems, IEEE Trans. Autom. Contr., 2005, 50, 397-402. doi: 10.1109/TAC.2005.843856

    CrossRef Google Scholar

    [9] F. Ding and T. Chen, On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 2006, 44, 2269-2284. doi: 10.1137/S0363012904441350

    CrossRef Google Scholar

    [10] F. Ding, P. Liu and J. Ding, Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math.Comput., 2008, 197, 41-50.

    Google Scholar

    [11] F. Ding, System Identification-New Theory and Methods, Science Press, Beijing, 2013.

    Google Scholar

    [12] L. Datta and S. Morgera, On the reducibility of centrosymmetric matrices-applications in engineering problems, Circ. Syst. Signal Process, 1989, 8, 71-96. doi: 10.1007/BF01598746

    CrossRef Google Scholar

    [13] M. Dehghan and M. Hajarian, An iterative algorithm for the reflapproximation, Appl. Math. Comput., 2008, 202, 571-588.

    Google Scholar

    [14] M. Dehghan and M. Hajarian, An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Model., 2010, 34, 639-654. doi: 10.1016/j.apm.2009.06.018

    CrossRef Google Scholar

    [15] M. Dehghan and M. Hajarian, Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations, Appl. Math. Model., 2011, 35, 3285-3300. doi: 10.1016/j.apm.2011.01.022

    CrossRef Google Scholar

    [16] M. Dehghan, M. Hajarian, Solving coupled matrix equations over generalized bisymmetric matrices, Int. J. Control Autom. Syst., 2012, 10, 905-9012.

    Google Scholar

    [17] M. Dehghan and M. Hajarian, The generalized Sylvester matrix equations over the generalized bisymmetric and skew-symmetric matrices, Int. J. Syst. Sci., 2012, 43, 1580-1590.

    Google Scholar

    [18] M. Dehghan and A. Shirilord, A generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method for solving complex Sylvester matrix equation, Appl. Math. Model., 2019, 348, 632-651.

    Google Scholar

    [19] Z. Gajic and M. T. J. Qureshi, The Lyapunov Matrix Equation in System Stability and Control, Academic Press, New York, 1995.

    Google Scholar

    [20] M. Hajarian, Extending LSQR methods to solve the generalized Sylvester-transpose and periodic Sylvester matrix equations, Math. Methods Appl. Sci., 2014, 37, 2017-2028. doi: 10.1002/mma.2955

    CrossRef Google Scholar

    [21] M. Hajarian, A finite iterative method for solving the general coupled discrete-time periodic matrix equations, Circuits Syst. Signal Process., 2015, 34, 105-125. doi: 10.1007/s00034-014-9842-1

    CrossRef Google Scholar

    [22] M. Hajarian, Symmetric solutions of the coupled generalized Sylvester matrix equations via BCR algorithm, J. Franklin Inst., 2016, 353, 3233-3248. doi: 10.1016/j.jfranklin.2016.06.008

    CrossRef Google Scholar

    [23] M. Hajarian, Convergence of HS version of BCR algorithmtosolve the generalized Sylvester matrix equation over generalized reflexive matrices, J. Franklin Inst., 2017, 354, 2340-2357. doi: 10.1016/j.jfranklin.2017.01.008

    CrossRef Google Scholar

    [24] M. Hajarian, Convergence analysis of generalized conjugate direction method to solve general coupled Sylvester discrete-time periodic matrix equations, International Journal of Adaptive Control and Signal Processing, 2017, 31, 985-1002 doi: 10.1002/acs.2742

    CrossRef Google Scholar

    [25] M. Hajarian, Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations, Appl. Math. Model., 2015, 39, 6073-6084. doi: 10.1016/j.apm.2015.01.026

    CrossRef Google Scholar

    [26] M. Hajarian, Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations, Journal of the Franklin Institute, 2013, 350, 3328-3341. doi: 10.1016/j.jfranklin.2013.07.008

    CrossRef Google Scholar

    [27] G. Huang, F. Yin and K. Guo, An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB = C, J. Comput. Appl. Math., 2008, 212(2), 231-244.

    Google Scholar

    [28] G. Huang, N. Wu, Y. Feng, Z. Zhou and K. Guo, Finite iterative algorithms for solving generalized coupled Sylvester systems-Part I: one-sided and generalized coupled Sylvester matrix equations over generalized reflexive solutions, Appl. Math. Model., 2012, 36(4), 1589-1603. doi: 10.1016/j.apm.2011.09.027

    CrossRef Google Scholar

    [29] J. Hu and C. Ma, Minimum-norm hamiltonian solutions of a class of generalized Sylvester-conjugate matrix equations, Appl. Math. Comput., 2017, 73, 747-764. doi: 10.1016/j.camwa.2016.12.029

    CrossRef Google Scholar

    [30] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991, 259-260.

    Google Scholar

    [31] Y. Ke and C. Ma, An alternating direction method for nonnegative solutions of the matrix equation AX+YB = C, Comput. Appl. Math., 2017, 36(1), 359-365.

    Google Scholar

    [32] C. Lv and C. Ma, BCR method for solving generalized coupled Sylvester equations over centrosymmetric or anti-centrosymmetric matrix, Comput. Math. Appl., 2018, 75(1), 70-88.

    Google Scholar

    [33] L. Lv, Z. Zhang, L. Zhang and W. Wang, An iterative algorithm for periodic Sylvester matrix equations, J. Ind. Manag. Optim., 2017, 13(2), 53-53.

    Google Scholar

    [34] M. Liang, C. You and L. Dai, An efficient algorithm for the generalized centro-symmetric solution of matrix equation AXB = C, Numer. Algorithms, 2007, 44, 173-184. doi: 10.1007/s11075-007-9097-z

    CrossRef Google Scholar

    [35] S. K. Li, T. Z. Huang, LSQR iterative method for generalized coupled Sylvester matrix equations, Appl. Math. Model., 2012, 36, 3545-3554. doi: 10.1016/j.apm.2011.10.030

    CrossRef Google Scholar

    [36] F. Piao, Q. Zhang and Z. Wang, The solution to matrix equation AX + XT C = B, J. Franklin Inst., 2007, 344, 1056-1062. doi: 10.1016/j.jfranklin.2007.05.002

    CrossRef Google Scholar

    [37] T. Penzl, A cyclic low-rank smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 2000, 21, 1401-1418.

    Google Scholar

    [38] Z. Peng, The reflexive least squares solutions of the matrix equation $A_1X_1B_1+A_2X_2B_2+\cdots+A_lX_lB_l = C$ with a submatrix constraint, Numer. Algorithms, 2013, 64, 455-480. doi: 10.1007/s11075-012-9674-7

    CrossRef $A_1X_1B_1+A_2X_2B_2+\cdots+A_lX_lB_l = C$ with a submatrix constraint" target="_blank">Google Scholar

    [39] Z. Peng and H. Xin, The reflexive least squares solutions of the general coupled matrix equations with a submatrix constraint, Appl. Math. Comput., 2013, 225, 425-445.

    Google Scholar

    [40] C. Song, G. Chen and L. Zhao, Iterative solutions to coupled Sylvester-transpose matrix equations, Appl. Math. Model., 2011, 35, 4675-4683. doi: 10.1016/j.apm.2011.03.038

    CrossRef Google Scholar

    [41] W. F. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl., 2004, 389, 23-31. doi: 10.1016/j.laa.2004.03.035

    CrossRef Google Scholar

    [42] Y. Tang, J. Peng and S. Yue, Cyclic and simultaneous iterative methods to matrix equations of the form$A_iXB_i = F_i$, Numer. Algor., 2014, 66, 379-397. doi: 10.1007/s11075-013-9740-9

    CrossRef $A_iXB_i = F_i$" target="_blank">Google Scholar

    [43] A. Wu, B. Li, Y. Zhang and G. Duan, Finite iterative solutions to coupled Sylvester-conjugate matrix equations, Appl. Math. Model., 2011, 35, 1065-1080. doi: 10.1016/j.apm.2010.07.053

    CrossRef Google Scholar

    [44] M. Wang, X. Cheng and M. Wei, Iterative algorithms for solving the matrix equation, AXB+CXTD = E, Appl. Math. Comput., 2007, 187, 622-629.

    Google Scholar

    [45] Q. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl. 2004, 384, 43-54. doi: 10.1016/j.laa.2003.12.039

    CrossRef Google Scholar

    [46] Q. Wang, Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 2005, 49, 641-650. doi: 10.1016/j.camwa.2005.01.014

    CrossRef Google Scholar

    [47] Q. Wang, H. Zhang and S. Yu, On solutions to the quaternion matrix equation AXB + CYD = E, Electron. J. Linear Algebra., 2008, 17, 343-358.

    Google Scholar

    [48] Q. Wang and Z. He, Solvability conditions and general solution for mixed Sylvester equations, Automatica, 2013, 49, 2713-2719. doi: 10.1016/j.automatica.2013.06.009

    CrossRef Google Scholar

    [49] D. Xie and Y. Sheng, The least-squares solutions of inconsistent matrix equation over symmetric and anti-symmetric matrices, Appl. Math. Lett., 2003, 16, 589-598. doi: 10.1016/S0893-9659(03)00041-7

    CrossRef Google Scholar

    [50] Y. Xie, N. Huang and C. Ma, Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix, Computers and Mathematics with Applications, 2014, 67, 2071-2084. doi: 10.1016/j.camwa.2014.04.012

    CrossRef Google Scholar

    [51] Y. Xie and C. Ma, The MGPBiCG method for solving the generalized coupled Sylvester-conjugate matrix equations, Applied Mathematics and Computation, 2015, 265, 680-78.

    Google Scholar

    [52] S. Yuan, A. Liao and Y. Lei, Least squares Hermitian solution of the matrix equation (AXB, CXD) = (E, F), Math. Comput. Modelling, 2008, 48, 91-100. doi: 10.1016/j.mcm.2007.08.009

    CrossRef Google Scholar

    [53] B. Zhou and G. Duan, A new solution to the generalized Sylvester matrix equation AV-EVF = BW, Syst. Contr. Lett., 2006, 55, 193-198. doi: 10.1016/j.sysconle.2005.07.002

    CrossRef Google Scholar

    [54] B. Zhou and G. Duan, Solutions to generalized Sylvester matrix equation by Schur decomposition, Int. J. Syst. Sci., 2007, 38, 369-375. doi: 10.1080/00207720601160215

    CrossRef Google Scholar

    [55] B. Zhou and G. Duan, On the generalized Sylvester mapping and matrix equations, Systems Control Letters, 2008, 57(3), 200-208. doi: 10.1016/j.sysconle.2007.08.010

    CrossRef Google Scholar

    [56] B. Zhou, Z. Li, G. Duan and Y. Wang, Solutions to a family of matrix equations by using the Kronecker matrix polynomials, Appl. Math. Comput., 2009, 212, 327-336.

    Google Scholar

    [57] B. Zhou, Z. Li, G. Duan and Y. Wang, Weighted least squares solutions to general coupled Sylvester matrix equations, Journal of Computational and Applied Mathematics, 2009, 224, 759-776. doi: 10.1016/j.cam.2008.06.014

    CrossRef Google Scholar

    [58] B. Zhou, G. Duan and Z. Li, Gradient based iterative algorithm for solving coupled matrix equations, Systems Control Lett., 2009, 58, 327-333. doi: 10.1016/j.sysconle.2008.12.004

    CrossRef Google Scholar

    [59] F. Zhang, M. Wei, Y. Li and J. Zhao, An efficient method for special least squares solution of the complex matrix equation (AXB, CXD) = (E, F), Computers and Mathematics with Applications, 2018, 76, 2001-2010. doi: 10.1016/j.camwa.2018.07.044

    CrossRef Google Scholar

    [60] F. Zhang, M. Wei, Y. Li and J. Zhao, The minimal norm least squares Hermitian solution of the complex matrix equation AXB + CXD = E, J. Franklin Inst., 2018, 355, 1296-1310. doi: 10.1016/j.jfranklin.2017.12.023

    CrossRef Google Scholar

    [61] H. Zhan and F. Ding, A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations, J. Frankl. Inst., 2014, 351(1), 340-357. doi: 10.1016/j.jfranklin.2013.08.023

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(3513) PDF downloads(602) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint