Citation: | Changfeng Ma, Tongxin Yan. AN ITERATIVE ALGORITHM FOR SOLVING A CLASS OF GENERALIZED COUPLED SYLVESTER-TRANSPOSE MATRIX EQUATIONS OVER BISYMMETRIC OR SKEW-ANTI-SYMMETRIC MATRICES[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1282-1310. doi: 10.11948/20190184 |
[1] | F. P. A. Beik and D. K. Salkuyeh, The coupled Sylvester-transpose matrix equations over generalized centro-symmetric matrices, Int. J. Comput. Math., 2013, 90, 1546-1566. doi: 10.1080/00207160.2012.761337 |
[2] | J. K. Baksalart and R. Kala, The matrix equation AXB+CYD = E, Linear Algebra Appl, 1980, 30, 141-147. doi: 10.1016/0024-3795(80)90189-5 |
[3] | L. Bao, Y. Lin and Y. Wei, A new projection method for solving large Sylvester equations, Appl. Numer. Math., 2007, 57, 521-532. doi: 10.1016/j.apnum.2006.07.005 |
[4] | Z. Bai, The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation, SIAM J. Matrix Anal. Appl., 2005, 26, 1100-1114. doi: 10.1137/S0895479803434185 |
[5] | B. Carpentieri, Y. Jing and T. Huang, The BiCOR and CORS iterative algorithms for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 2011, 33, 3020-3036. doi: 10.1137/100794031 |
[6] | J. Cai and G. Chen, An iterative algorithm for the least squares bisymmetric solution of the matrix equations $A_1XB_1= C_1, A_2XB_2= C_2$, Math. Comput. Modelling, 2009, 50, 1237-1244. doi: 10.1016/j.mcm.2009.07.004 |
[7] | B. Datta, Numerical Methods for Linear Control Systems, Elsevier Academic Press, 2004. |
[8] | F. Ding and T. Chen, Hierarchical least squares identification methods for multivariable systems, IEEE Trans. Autom. Contr., 2005, 50, 397-402. doi: 10.1109/TAC.2005.843856 |
[9] | F. Ding and T. Chen, On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 2006, 44, 2269-2284. doi: 10.1137/S0363012904441350 |
[10] | F. Ding, P. Liu and J. Ding, Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math.Comput., 2008, 197, 41-50. |
[11] | F. Ding, System Identification-New Theory and Methods, Science Press, Beijing, 2013. |
[12] | L. Datta and S. Morgera, On the reducibility of centrosymmetric matrices-applications in engineering problems, Circ. Syst. Signal Process, 1989, 8, 71-96. doi: 10.1007/BF01598746 |
[13] | M. Dehghan and M. Hajarian, An iterative algorithm for the reflapproximation, Appl. Math. Comput., 2008, 202, 571-588. |
[14] | M. Dehghan and M. Hajarian, An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Model., 2010, 34, 639-654. doi: 10.1016/j.apm.2009.06.018 |
[15] | M. Dehghan and M. Hajarian, Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations, Appl. Math. Model., 2011, 35, 3285-3300. doi: 10.1016/j.apm.2011.01.022 |
[16] | M. Dehghan, M. Hajarian, Solving coupled matrix equations over generalized bisymmetric matrices, Int. J. Control Autom. Syst., 2012, 10, 905-9012. |
[17] | M. Dehghan and M. Hajarian, The generalized Sylvester matrix equations over the generalized bisymmetric and skew-symmetric matrices, Int. J. Syst. Sci., 2012, 43, 1580-1590. |
[18] | M. Dehghan and A. Shirilord, A generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method for solving complex Sylvester matrix equation, Appl. Math. Model., 2019, 348, 632-651. |
[19] | Z. Gajic and M. T. J. Qureshi, The Lyapunov Matrix Equation in System Stability and Control, Academic Press, New York, 1995. |
[20] | M. Hajarian, Extending LSQR methods to solve the generalized Sylvester-transpose and periodic Sylvester matrix equations, Math. Methods Appl. Sci., 2014, 37, 2017-2028. doi: 10.1002/mma.2955 |
[21] | M. Hajarian, A finite iterative method for solving the general coupled discrete-time periodic matrix equations, Circuits Syst. Signal Process., 2015, 34, 105-125. doi: 10.1007/s00034-014-9842-1 |
[22] | M. Hajarian, Symmetric solutions of the coupled generalized Sylvester matrix equations via BCR algorithm, J. Franklin Inst., 2016, 353, 3233-3248. doi: 10.1016/j.jfranklin.2016.06.008 |
[23] | M. Hajarian, Convergence of HS version of BCR algorithmtosolve the generalized Sylvester matrix equation over generalized reflexive matrices, J. Franklin Inst., 2017, 354, 2340-2357. doi: 10.1016/j.jfranklin.2017.01.008 |
[24] | M. Hajarian, Convergence analysis of generalized conjugate direction method to solve general coupled Sylvester discrete-time periodic matrix equations, International Journal of Adaptive Control and Signal Processing, 2017, 31, 985-1002 doi: 10.1002/acs.2742 |
[25] | M. Hajarian, Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations, Appl. Math. Model., 2015, 39, 6073-6084. doi: 10.1016/j.apm.2015.01.026 |
[26] | M. Hajarian, Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations, Journal of the Franklin Institute, 2013, 350, 3328-3341. doi: 10.1016/j.jfranklin.2013.07.008 |
[27] | G. Huang, F. Yin and K. Guo, An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB = C, J. Comput. Appl. Math., 2008, 212(2), 231-244. |
[28] | G. Huang, N. Wu, Y. Feng, Z. Zhou and K. Guo, Finite iterative algorithms for solving generalized coupled Sylvester systems-Part I: one-sided and generalized coupled Sylvester matrix equations over generalized reflexive solutions, Appl. Math. Model., 2012, 36(4), 1589-1603. doi: 10.1016/j.apm.2011.09.027 |
[29] | J. Hu and C. Ma, Minimum-norm hamiltonian solutions of a class of generalized Sylvester-conjugate matrix equations, Appl. Math. Comput., 2017, 73, 747-764. doi: 10.1016/j.camwa.2016.12.029 |
[30] | R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991, 259-260. |
[31] | Y. Ke and C. Ma, An alternating direction method for nonnegative solutions of the matrix equation AX+YB = C, Comput. Appl. Math., 2017, 36(1), 359-365. |
[32] | C. Lv and C. Ma, BCR method for solving generalized coupled Sylvester equations over centrosymmetric or anti-centrosymmetric matrix, Comput. Math. Appl., 2018, 75(1), 70-88. |
[33] | L. Lv, Z. Zhang, L. Zhang and W. Wang, An iterative algorithm for periodic Sylvester matrix equations, J. Ind. Manag. Optim., 2017, 13(2), 53-53. |
[34] | M. Liang, C. You and L. Dai, An efficient algorithm for the generalized centro-symmetric solution of matrix equation AXB = C, Numer. Algorithms, 2007, 44, 173-184. doi: 10.1007/s11075-007-9097-z |
[35] | S. K. Li, T. Z. Huang, LSQR iterative method for generalized coupled Sylvester matrix equations, Appl. Math. Model., 2012, 36, 3545-3554. doi: 10.1016/j.apm.2011.10.030 |
[36] | F. Piao, Q. Zhang and Z. Wang, The solution to matrix equation AX + XT C = B, J. Franklin Inst., 2007, 344, 1056-1062. doi: 10.1016/j.jfranklin.2007.05.002 |
[37] | T. Penzl, A cyclic low-rank smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 2000, 21, 1401-1418. |
[38] |
Z. Peng, The reflexive least squares solutions of the matrix equation $A_1X_1B_1+A_2X_2B_2+\cdots+A_lX_lB_l = C$ with a submatrix constraint, Numer. Algorithms, 2013, 64, 455-480. doi: 10.1007/s11075-012-9674-7
CrossRef $A_1X_1B_1+A_2X_2B_2+\cdots+A_lX_lB_l = C$ with a submatrix constraint" target="_blank">Google Scholar |
[39] | Z. Peng and H. Xin, The reflexive least squares solutions of the general coupled matrix equations with a submatrix constraint, Appl. Math. Comput., 2013, 225, 425-445. |
[40] | C. Song, G. Chen and L. Zhao, Iterative solutions to coupled Sylvester-transpose matrix equations, Appl. Math. Model., 2011, 35, 4675-4683. doi: 10.1016/j.apm.2011.03.038 |
[41] | W. F. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl., 2004, 389, 23-31. doi: 10.1016/j.laa.2004.03.035 |
[42] | Y. Tang, J. Peng and S. Yue, Cyclic and simultaneous iterative methods to matrix equations of the form$A_iXB_i = F_i$, Numer. Algor., 2014, 66, 379-397. doi: 10.1007/s11075-013-9740-9 |
[43] | A. Wu, B. Li, Y. Zhang and G. Duan, Finite iterative solutions to coupled Sylvester-conjugate matrix equations, Appl. Math. Model., 2011, 35, 1065-1080. doi: 10.1016/j.apm.2010.07.053 |
[44] | M. Wang, X. Cheng and M. Wei, Iterative algorithms for solving the matrix equation, AXB+CXTD = E, Appl. Math. Comput., 2007, 187, 622-629. |
[45] | Q. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl. 2004, 384, 43-54. doi: 10.1016/j.laa.2003.12.039 |
[46] | Q. Wang, Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 2005, 49, 641-650. doi: 10.1016/j.camwa.2005.01.014 |
[47] | Q. Wang, H. Zhang and S. Yu, On solutions to the quaternion matrix equation AXB + CYD = E, Electron. J. Linear Algebra., 2008, 17, 343-358. |
[48] | Q. Wang and Z. He, Solvability conditions and general solution for mixed Sylvester equations, Automatica, 2013, 49, 2713-2719. doi: 10.1016/j.automatica.2013.06.009 |
[49] | D. Xie and Y. Sheng, The least-squares solutions of inconsistent matrix equation over symmetric and anti-symmetric matrices, Appl. Math. Lett., 2003, 16, 589-598. doi: 10.1016/S0893-9659(03)00041-7 |
[50] | Y. Xie, N. Huang and C. Ma, Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix, Computers and Mathematics with Applications, 2014, 67, 2071-2084. doi: 10.1016/j.camwa.2014.04.012 |
[51] | Y. Xie and C. Ma, The MGPBiCG method for solving the generalized coupled Sylvester-conjugate matrix equations, Applied Mathematics and Computation, 2015, 265, 680-78. |
[52] | S. Yuan, A. Liao and Y. Lei, Least squares Hermitian solution of the matrix equation (AXB, CXD) = (E, F), Math. Comput. Modelling, 2008, 48, 91-100. doi: 10.1016/j.mcm.2007.08.009 |
[53] | B. Zhou and G. Duan, A new solution to the generalized Sylvester matrix equation AV-EVF = BW, Syst. Contr. Lett., 2006, 55, 193-198. doi: 10.1016/j.sysconle.2005.07.002 |
[54] | B. Zhou and G. Duan, Solutions to generalized Sylvester matrix equation by Schur decomposition, Int. J. Syst. Sci., 2007, 38, 369-375. doi: 10.1080/00207720601160215 |
[55] | B. Zhou and G. Duan, On the generalized Sylvester mapping and matrix equations, Systems Control Letters, 2008, 57(3), 200-208. doi: 10.1016/j.sysconle.2007.08.010 |
[56] | B. Zhou, Z. Li, G. Duan and Y. Wang, Solutions to a family of matrix equations by using the Kronecker matrix polynomials, Appl. Math. Comput., 2009, 212, 327-336. |
[57] | B. Zhou, Z. Li, G. Duan and Y. Wang, Weighted least squares solutions to general coupled Sylvester matrix equations, Journal of Computational and Applied Mathematics, 2009, 224, 759-776. doi: 10.1016/j.cam.2008.06.014 |
[58] | B. Zhou, G. Duan and Z. Li, Gradient based iterative algorithm for solving coupled matrix equations, Systems Control Lett., 2009, 58, 327-333. doi: 10.1016/j.sysconle.2008.12.004 |
[59] | F. Zhang, M. Wei, Y. Li and J. Zhao, An efficient method for special least squares solution of the complex matrix equation (AXB, CXD) = (E, F), Computers and Mathematics with Applications, 2018, 76, 2001-2010. doi: 10.1016/j.camwa.2018.07.044 |
[60] | F. Zhang, M. Wei, Y. Li and J. Zhao, The minimal norm least squares Hermitian solution of the complex matrix equation AXB + CXD = E, J. Franklin Inst., 2018, 355, 1296-1310. doi: 10.1016/j.jfranklin.2017.12.023 |
[61] | H. Zhan and F. Ding, A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations, J. Frankl. Inst., 2014, 351(1), 340-357. doi: 10.1016/j.jfranklin.2013.08.023 |