2020 Volume 10 Issue 4
Article Contents

Litao Zhang, Xianyu Zuo. GLOBAL RELAXED MODULUS-BASED SYNCHRONOUS BLOCK MULTISPLITTING MULTI-PARAMETERS METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1267-1281. doi: 10.11948/20190177
Citation: Litao Zhang, Xianyu Zuo. GLOBAL RELAXED MODULUS-BASED SYNCHRONOUS BLOCK MULTISPLITTING MULTI-PARAMETERS METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1267-1281. doi: 10.11948/20190177

GLOBAL RELAXED MODULUS-BASED SYNCHRONOUS BLOCK MULTISPLITTING MULTI-PARAMETERS METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS

  • Author Bio: Email address: yifanzhang2019@126.com(Y. Zhang)
  • Corresponding author: Email address: xianyu_zuo@163.com(X. Zuo)
  • Recently, Bai and Zhang [Numerical Linear Algebra with Applications, 2013, 20, 425Ƀ439] constructed modulus-based synchronous multisplitting methods by an equivalent reformulation of the linear complementarity problem into a system of fixed-point equations and studied the convergence of them; Li et al. [Journal of Nanchang University (Natural Science), 2013, 37, 307Ƀ312] studied synchronous block multisplitting iteration methods; Zhang and Li [Computers and Mathematics with Application, 2014, 67, 1954Ƀ1959] analyzed and obtained the weaker convergence results for linear complementarity problems. In this paper, we generalize their algorithms and further study global relaxed modulus-based synchronous block multisplitting multi-parameters methods for linear complementarity problems. Furthermore, we give the weaker convergence results of our new method in this paper when the system matrix is a block $ H_{+}- $matrix. Therefore, new results provide a guarantee for the optimal relaxation parameters, please refer to [A. Hadjidimos, M. Lapidakis and M. Tzoumas, SIAM Journal on Matrix Analysis and Applications, 2012, 33, 97Ƀ110, (dx.doi.org/10.1137/100811222)], where optimal parameters are determined.
  • 加载中
  • [1] Z. Bai and L. Zhang, Modulus-based synchronous multisplitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2013, 20, 425-439. doi: 10.1002/nla.1835

    CrossRef Google Scholar

    [2] Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem, SIAM Journal on Matrix Analysis and Applications, 1999, 21, 67-78. doi: 10.1137/S0895479897324032

    CrossRef Google Scholar

    [3] Z. Bai, The convergence of parallel iteration algorithms for linear complementarity problems, Computers and Mathematics with Applications, 1996, 32, 1-17. doi: 10.1016/0898-1221(96)00172-1

    CrossRef Google Scholar

    [4] Z. Bai and D.J. Evans, Matrix multisplitting relaxation methods for linear complementarity problems, International Journal of Computer Mathematics, 1997, 63, 309-326. doi: 10.1080/00207169708804569

    CrossRef Google Scholar

    [5] Z. Bai, On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem, IMA Journal of Numerical Analysis, 1998, 18, 509-518. doi: 10.1093/imanum/18.4.509

    CrossRef Google Scholar

    [6] Z. Bai and D.J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods, Reseaux et systemes repartis: Calculateurs Paralleles, 2001, 13, 125-154.

    Google Scholar

    [7] Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2010, 17, 917-933. doi: 10.1002/nla.680

    CrossRef Google Scholar

    [8] Z. Bai and L. Zhang, Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems, Numerical Algorithms, 2013, 62, 59-77. doi: 10.1007/s11075-012-9566-x

    CrossRef Google Scholar

    [9] Z. Bai and D. J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods, International Journal of Computer Mathematics, 2002, 79, 205-232. doi: 10.1080/00207160211927

    CrossRef Google Scholar

    [10] Z. Bai, Parallel matrix multisplitting block relaxation iteration methods, Mathematica Numerica Sinica, 1995, 3, 238-252.

    Google Scholar

    [11] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press: New York, 1979.

    Google Scholar

    [12] L. Cui, X. Zhang and S. Wu, A new preconditioner of the tensor splitting iterative method for solving multi-linear systems with $\mathcal{M}$-tensors, Computers and Mathematics with Applications, 2020, 39, 173.https://doi.org/10.1007/s40314-020-01194-8.

    $\mathcal{M}$-tensors" target="_blank">Google Scholar

    [13] L. Cui, M. Li, Y. Song, Preconditioned tensor splitting iterations method for solving multi-linear systems, Applied Mathematics Letters, 2019, 96, 89šC-94. doi: 10.1016/j.aml.2019.04.019

    CrossRef Google Scholar

    [14] W. M. G. van Bokhoven, Piecewise-Linear Modelling and Analysis, Proefschrift, Eindhoven, 1981.

    Google Scholar

    [15] W. Cottle, J. -S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, San Diego, 1992.

    Google Scholar

    [16] J. Dong and, M. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numerical Linear Algebra with Applications, 2009, 16, 129-143. doi: 10.1002/nla.609

    CrossRef Google Scholar

    [17] M. C. Ferris and J. -S. Pang, Engineering and economic applications of complementarity problems, SIAM Review, 1997, 39m 669-713.

    Google Scholar

    [18] A. Frommer and G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra and Its Applications, 1989, 119, 141-152. doi: 10.1016/0024-3795(89)90074-8

    CrossRef Google Scholar

    [19] A. Hadjidimos, M. Lapidakis and M. Tzoumas, On Iterative Solution for Linear Complementarity Problem with an $H_{+}$-Matrix, SIAM Journal on Matrix Analysis and Applications, 2012, 33, 97-110. doi: 10.1137/100811222

    CrossRef $H_{+}$-Matrix" target="_blank">Google Scholar

    [20] A. Hadjidimos and M. Tzoumas, Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem, Linear Algebra and Its Applications, 2009, 431, 197-210. doi: 10.1016/j.laa.2009.02.024

    CrossRef Google Scholar

    [21] D. Jiang, W. Li and H. Lv, An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications, Neurocomputing, 2017, 220, 160-169. doi: 10.1016/j.neucom.2016.07.056

    CrossRef Google Scholar

    [22] D. Jiang, Y. Wang, Y. Han and H. Lv, Maximum connectivity-based channel allocation algorithm in cognitive wireless networks for medical applications, Neurocomputing, 2017, 220, 41-51. doi: 10.1016/j.neucom.2016.05.102

    CrossRef Google Scholar

    [23] D. Jiang, Z. Xu, W. Li, et al., An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks, Journal of Communications and Networks, 2016, 18(5), 713-724. doi: 10.1109/JCN.2016.000101

    CrossRef Google Scholar

    [24] D. Jiang, Z. Xu, J. Liu and W. Zhao, An optimization-based robust routing algorithm to energy-efficient networks for cloud computing, Telecommunication Systems, 2016, 63(1), 89-98.

    Google Scholar

    [25] D. Jiang, Z. Xu and Z. Lv, A multicast delivery approach with minimum energy consumption for wireless multi-hop networks, Telecommunication Systems, 2016, 62(4), 771-782. doi: 10.1007/s11235-015-0111-9

    CrossRef Google Scholar

    [26] D. Jiang, L. Nie, Z. Lv and H. Song, Spatio-temporal Kronecker compressive sensing for traffic matrix recovery, IEEE Access, 2016, 4, 3046-3053. doi: 10.1109/ACCESS.2016.2573264

    CrossRef Google Scholar

    [27] W. Li, A general modulus-based matrix splitting method for linear complementarity problems of H-matrices, Applied Mathematics Letters, 2013, 26, 1159-1164. doi: 10.1016/j.aml.2013.06.015

    CrossRef Google Scholar

    [28] Y. Li, X. Wang and C. Sun, Convergence analysis of linear complementarity problems based on synchronous block multisplitting iteration methods, Journal of Nanchang University, Natural Science, 2013, 37, 307-312.

    Google Scholar

    [29] F. Robert, M. Charnay and F. Musy, Iterations chaotiques serie-parallel pour des equations non-lineaires de point fixe, Matematiky, 1975, 20, 1-38.

    Google Scholar

    [30] Y. Song, Convergence of Block AOR Iterative Methods, Mathematica Applicata, 1993, 1, 39-45.

    Google Scholar

    [31] S. Varga, Matrix Iterative Analysis, Springer-Verlag, Berlin and Heidelberg, 2000.

    Google Scholar

    [32] M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1972.

    Google Scholar

    [33] L. Zhang and Z. Ren, Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems, Applied Mathematics Letters, 2013, 26, 638-642. doi: 10.1016/j.aml.2013.01.001

    CrossRef Google Scholar

    [34] L. Zhang, T. Huang, S. Cheng and T. Gu, The weaker convergence of non-stationary matrix multisplitting methods for almost linear systems, Taiwanese Journal of Mathematics, 2011, 15, 1423-1436. doi: 10.11650/twjm/1500406354

    CrossRef Google Scholar

    [35] L. Zhang and J. Li, The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems, Computers and Mathematics with Application, 2014, 67, 1954-1959. doi: 10.1016/j.camwa.2014.04.018

    CrossRef Google Scholar

    [36] L. Zhang, T. Huang and T. Gu, Global relaxed non-stationary multisplitting multi-parameters methods, International Journal of Computer Mathematics, 2008, 85, 211-224. doi: 10.1080/00207160701405451

    CrossRef Google Scholar

    [37] L. Zhang, T. Huang, T. Gu and X. Guo, Convergence of relaxed multisplitting USAOR method for an H-matrix, Applied Mathematics and Computation, 2008, 202, 121-132. doi: 10.1016/j.amc.2008.01.034

    CrossRef Google Scholar

    [38] L. Zhang, T. Huang and T. Gu, Convergent improvement of SSOR multisplitting method, Journal of Computational and Applied Mathematics, 2009, 225, 393-397. doi: 10.1016/j.cam.2008.07.051

    CrossRef Google Scholar

    [39] L. Zhang, T. Huang, S. Cheng, T. Gu and Y. Wang, A note on parallel multisplitting TOR method of an H-matrix, International Journal of Computer Mathematics, 2011, 88, 501-507. doi: 10.1080/00207160903501917

    CrossRef Google Scholar

    [40] L. Zhang, X. Zuo, T. Gu and X. Liu, Improved convergence theorems of multisplitting methods for the linear complementarity problem, Applied Mathematics and Computation, 2014, 243, 982-987. doi: 10.1016/j.amc.2014.06.038

    CrossRef Google Scholar

    [41] L. Zhang, J. Li, T. Gu and X. Liu, Convergence of relaxed matrix multisplitting chaotic methods for H-matrices, Journal of Applied Mathematics, 2014, 2014, 9.

    Google Scholar

    [42] L. Zhang, Y. Zhou, T. Gu and X. Liu, Convergence improvement of relaxed multisplitting USAOR methods for H-matrices linear systems, Applied Mathematics and Computation, 2014, 247, 225-232. doi: 10.1016/j.amc.2014.08.106

    CrossRef Google Scholar

Figures(1)  /  Tables(1)

Article Metrics

Article views(2231) PDF downloads(432) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint