[1]
|
Z. Bai and L. Zhang, Modulus-based synchronous multisplitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2013, 20, 425-439. doi: 10.1002/nla.1835
CrossRef Google Scholar
|
[2]
|
Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem, SIAM Journal on Matrix Analysis and Applications, 1999, 21, 67-78. doi: 10.1137/S0895479897324032
CrossRef Google Scholar
|
[3]
|
Z. Bai, The convergence of parallel iteration algorithms for linear complementarity problems, Computers and Mathematics with Applications, 1996, 32, 1-17. doi: 10.1016/0898-1221(96)00172-1
CrossRef Google Scholar
|
[4]
|
Z. Bai and D.J. Evans, Matrix multisplitting relaxation methods for linear complementarity problems, International Journal of Computer Mathematics, 1997, 63, 309-326. doi: 10.1080/00207169708804569
CrossRef Google Scholar
|
[5]
|
Z. Bai, On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem, IMA Journal of Numerical Analysis, 1998, 18, 509-518. doi: 10.1093/imanum/18.4.509
CrossRef Google Scholar
|
[6]
|
Z. Bai and D.J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods, Reseaux et systemes repartis: Calculateurs Paralleles, 2001, 13, 125-154.
Google Scholar
|
[7]
|
Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2010, 17, 917-933. doi: 10.1002/nla.680
CrossRef Google Scholar
|
[8]
|
Z. Bai and L. Zhang, Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems, Numerical Algorithms, 2013, 62, 59-77. doi: 10.1007/s11075-012-9566-x
CrossRef Google Scholar
|
[9]
|
Z. Bai and D. J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods, International Journal of Computer Mathematics, 2002, 79, 205-232. doi: 10.1080/00207160211927
CrossRef Google Scholar
|
[10]
|
Z. Bai, Parallel matrix multisplitting block relaxation iteration methods, Mathematica Numerica Sinica, 1995, 3, 238-252.
Google Scholar
|
[11]
|
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press: New York, 1979.
Google Scholar
|
[12]
|
L. Cui, X. Zhang and S. Wu, A new preconditioner of the tensor splitting iterative method for solving multi-linear systems with $\mathcal{M}$-tensors, Computers and Mathematics with Applications, 2020, 39, 173.https://doi.org/10.1007/s40314-020-01194-8.
$\mathcal{M}$-tensors" target="_blank">Google Scholar
|
[13]
|
L. Cui, M. Li, Y. Song, Preconditioned tensor splitting iterations method for solving multi-linear systems, Applied Mathematics Letters, 2019, 96, 89šC-94. doi: 10.1016/j.aml.2019.04.019
CrossRef Google Scholar
|
[14]
|
W. M. G. van Bokhoven, Piecewise-Linear Modelling and Analysis, Proefschrift, Eindhoven, 1981.
Google Scholar
|
[15]
|
W. Cottle, J. -S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, San Diego, 1992.
Google Scholar
|
[16]
|
J. Dong and, M. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numerical Linear Algebra with Applications, 2009, 16, 129-143. doi: 10.1002/nla.609
CrossRef Google Scholar
|
[17]
|
M. C. Ferris and J. -S. Pang, Engineering and economic applications of complementarity problems, SIAM Review, 1997, 39m 669-713.
Google Scholar
|
[18]
|
A. Frommer and G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra and Its Applications, 1989, 119, 141-152. doi: 10.1016/0024-3795(89)90074-8
CrossRef Google Scholar
|
[19]
|
A. Hadjidimos, M. Lapidakis and M. Tzoumas, On Iterative Solution for Linear Complementarity Problem with an $H_{+}$-Matrix, SIAM Journal on Matrix Analysis and Applications, 2012, 33, 97-110. doi: 10.1137/100811222
CrossRef $H_{+}$-Matrix" target="_blank">Google Scholar
|
[20]
|
A. Hadjidimos and M. Tzoumas, Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem, Linear Algebra and Its Applications, 2009, 431, 197-210. doi: 10.1016/j.laa.2009.02.024
CrossRef Google Scholar
|
[21]
|
D. Jiang, W. Li and H. Lv, An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications, Neurocomputing, 2017, 220, 160-169. doi: 10.1016/j.neucom.2016.07.056
CrossRef Google Scholar
|
[22]
|
D. Jiang, Y. Wang, Y. Han and H. Lv, Maximum connectivity-based channel allocation algorithm in cognitive wireless networks for medical applications, Neurocomputing, 2017, 220, 41-51. doi: 10.1016/j.neucom.2016.05.102
CrossRef Google Scholar
|
[23]
|
D. Jiang, Z. Xu, W. Li, et al., An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks, Journal of Communications and Networks, 2016, 18(5), 713-724. doi: 10.1109/JCN.2016.000101
CrossRef Google Scholar
|
[24]
|
D. Jiang, Z. Xu, J. Liu and W. Zhao, An optimization-based robust routing algorithm to energy-efficient networks for cloud computing, Telecommunication Systems, 2016, 63(1), 89-98.
Google Scholar
|
[25]
|
D. Jiang, Z. Xu and Z. Lv, A multicast delivery approach with minimum energy consumption for wireless multi-hop networks, Telecommunication Systems, 2016, 62(4), 771-782. doi: 10.1007/s11235-015-0111-9
CrossRef Google Scholar
|
[26]
|
D. Jiang, L. Nie, Z. Lv and H. Song, Spatio-temporal Kronecker compressive sensing for traffic matrix recovery, IEEE Access, 2016, 4, 3046-3053. doi: 10.1109/ACCESS.2016.2573264
CrossRef Google Scholar
|
[27]
|
W. Li, A general modulus-based matrix splitting method for linear complementarity problems of H-matrices, Applied Mathematics Letters, 2013, 26, 1159-1164. doi: 10.1016/j.aml.2013.06.015
CrossRef Google Scholar
|
[28]
|
Y. Li, X. Wang and C. Sun, Convergence analysis of linear complementarity problems based on synchronous block multisplitting iteration methods, Journal of Nanchang University, Natural Science, 2013, 37, 307-312.
Google Scholar
|
[29]
|
F. Robert, M. Charnay and F. Musy, Iterations chaotiques serie-parallel pour des equations non-lineaires de point fixe, Matematiky, 1975, 20, 1-38.
Google Scholar
|
[30]
|
Y. Song, Convergence of Block AOR Iterative Methods, Mathematica Applicata, 1993, 1, 39-45.
Google Scholar
|
[31]
|
S. Varga, Matrix Iterative Analysis, Springer-Verlag, Berlin and Heidelberg, 2000.
Google Scholar
|
[32]
|
M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1972.
Google Scholar
|
[33]
|
L. Zhang and Z. Ren, Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems, Applied Mathematics Letters, 2013, 26, 638-642. doi: 10.1016/j.aml.2013.01.001
CrossRef Google Scholar
|
[34]
|
L. Zhang, T. Huang, S. Cheng and T. Gu, The weaker convergence of non-stationary matrix multisplitting methods for almost linear systems, Taiwanese Journal of Mathematics, 2011, 15, 1423-1436. doi: 10.11650/twjm/1500406354
CrossRef Google Scholar
|
[35]
|
L. Zhang and J. Li, The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems, Computers and Mathematics with Application, 2014, 67, 1954-1959. doi: 10.1016/j.camwa.2014.04.018
CrossRef Google Scholar
|
[36]
|
L. Zhang, T. Huang and T. Gu, Global relaxed non-stationary multisplitting multi-parameters methods, International Journal of Computer Mathematics, 2008, 85, 211-224. doi: 10.1080/00207160701405451
CrossRef Google Scholar
|
[37]
|
L. Zhang, T. Huang, T. Gu and X. Guo, Convergence of relaxed multisplitting USAOR method for an H-matrix, Applied Mathematics and Computation, 2008, 202, 121-132. doi: 10.1016/j.amc.2008.01.034
CrossRef Google Scholar
|
[38]
|
L. Zhang, T. Huang and T. Gu, Convergent improvement of SSOR multisplitting method, Journal of Computational and Applied Mathematics, 2009, 225, 393-397. doi: 10.1016/j.cam.2008.07.051
CrossRef Google Scholar
|
[39]
|
L. Zhang, T. Huang, S. Cheng, T. Gu and Y. Wang, A note on parallel multisplitting TOR method of an H-matrix, International Journal of Computer Mathematics, 2011, 88, 501-507. doi: 10.1080/00207160903501917
CrossRef Google Scholar
|
[40]
|
L. Zhang, X. Zuo, T. Gu and X. Liu, Improved convergence theorems of multisplitting methods for the linear complementarity problem, Applied Mathematics and Computation, 2014, 243, 982-987. doi: 10.1016/j.amc.2014.06.038
CrossRef Google Scholar
|
[41]
|
L. Zhang, J. Li, T. Gu and X. Liu, Convergence of relaxed matrix multisplitting chaotic methods for H-matrices, Journal of Applied Mathematics, 2014, 2014, 9.
Google Scholar
|
[42]
|
L. Zhang, Y. Zhou, T. Gu and X. Liu, Convergence improvement of relaxed multisplitting USAOR methods for H-matrices linear systems, Applied Mathematics and Computation, 2014, 247, 225-232. doi: 10.1016/j.amc.2014.08.106
CrossRef Google Scholar
|