[1]
|
J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 2011, 74, 6601-6616. doi: 10.1016/j.na.2011.06.043
CrossRef Google Scholar
|
[2]
|
J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 1977, 197, 463-465. doi: 10.1126/science.197.4302.463
CrossRef Google Scholar
|
[3]
|
C. W. Clark, Mathematical bioeconomics: the optimal management of renewable resources, Wiley-Interscience, New York, USA, 1976.
Google Scholar
|
[4]
|
C. W. Clark, Bioeconomic modeling and fisheries management, John Wiley & Sons, New York, USA, 1985.
Google Scholar
|
[5]
|
J. Geng, M. Liu and Y. Zhang, Stability of a stochastic one-predator-two-prey population model with time delays, Commun. Nonlin. Scien. Numer. Simul., 2017, 53, 65-82. doi: 10.1016/j.cnsns.2017.04.022
CrossRef Google Scholar
|
[6]
|
R. P. Gupta, M. Banerjee and P. Chandra, Period doubling cascades of prey-predator model with nonlinear harvesting and control of over exploitation through taxation, Commun. Nonlin. Scien. Numer. Simul., 2014, 19, 2382-2405. doi: 10.1016/j.cnsns.2013.10.033
CrossRef Google Scholar
|
[7]
|
R. P. Gupta and P. Chandra, Dynamical properties of a prey-predator-scavenger model with quadratic harvesting, 2017, 49, 202-214.
Google Scholar
|
[8]
|
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 2001, 43, 525-546. doi: 10.1137/S0036144500378302
CrossRef Google Scholar
|
[9]
|
D. Li, The stationary distribution and ergodicity of a stochastic generalized logistic system, Statist. Probab. Lett., 2013, 83, 580-583. doi: 10.1016/j.spl.2012.11.006
CrossRef Google Scholar
|
[10]
|
M. Li, B. Chen and H. Ye, A bioeconomic differential algebraic predator-prey model with nonlinear prey harvesting, Applied Mathematical Modelling, 2017, 42, 17-28. doi: 10.1016/j.apm.2016.09.029
CrossRef Google Scholar
|
[11]
|
W. Li and K. Wang, Optimal harvesting policy for general stochastic Logistic population model, J. Math. Anal. Appl., 2010, 368, 420-428. doi: 10.1016/j.jmaa.2010.04.002
CrossRef Google Scholar
|
[12]
|
M. Liu, Optimal harvesting policy of a stochastic predator-prey model with time delay, Appl. Math. Lett., 2015, 48, 102-108. doi: 10.1016/j.aml.2014.10.007
CrossRef Google Scholar
|
[13]
|
M. Liu and C. Bai, Optimal harvesting of a stochastic logistic model with time delay, J. Nonlinear Sci., 2015, 25, 277-289. doi: 10.1007/s00332-014-9229-2
CrossRef Google Scholar
|
[14]
|
M. Liu and M. Deng, Analysis of a stochastic hybrid population model with Allee effect, Appl. Math. Comp., 2020, 364, 124582.https://doi.org/10.1016/j.amc.2019.124582. doi: 10.1016/j.amc.2019.124582
CrossRef Google Scholar
|
[15]
|
L. Liu and X. Meng, Optimal harvesting control and dynamics of two-species stochastic model with delays, Adv Differ Equ., 2017, 2017, 18. https://doi.org/10.1186/s13662-017-1077-6. doi: 10.1186/s13662-017-1077-6
CrossRef Google Scholar
|
[16]
|
J. Lv, Y. Zhang and X. Zou, Recurrence and strong stochastic persistence of a stochastic single-species model, Applied Mathematics Letters, 2019, 89, 64-69. doi: 10.1016/j.aml.2018.09.007
CrossRef Google Scholar
|
[17]
|
X. Mao and C. Yuan, Stochastic differential equations with Markovian switching, Imperial College Press, London, 2006.
Google Scholar
|
[18]
|
R. M. May, J. R. Beddington, J. W. Horwood and J. G. Shepherd, Exploiting natural populations in an uncertain world, Math. Biosci., 1978, 42, 219-252. doi: 10.1016/0025-5564(78)90097-4
CrossRef Google Scholar
|
[19]
|
P. Panja, S. K. Mondal and D. K. Jana, Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics and harvesting, Chaos, Solitons and Fractals, 2017, 104, 389-399. doi: 10.1016/j.chaos.2017.08.036
CrossRef Google Scholar
|
[20]
|
J. G. Shepherd and J. W. Horwood, The sensitivity of exploited populations to environmental noise, and the implications for management, J. Cons. Int. Explor. Mer., 1979, 38, 318-323. doi: 10.1093/icesjms/38.3.318
CrossRef Google Scholar
|
[21]
|
R. K. Upadhyay, P. Roy and J. Datta, Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability, 2015, 79, 2251-2270.
Google Scholar
|
[22]
|
H. Wang and M. Liu, Stationary distribution of a stochastic hybrid phytoplankton-zooplankton model with toxin-producing phytoplankton, Appl. Math. Lett., 2020, 101, 106077. https://doi.org/10.1016/j.aml.2019.106077. doi: 10.1016/j.aml.2019.106077
CrossRef Google Scholar
|
[23]
|
D. Zhao, S. Yuan and H. Liu, Stochastic dynamics of the delayed chemostat with Levy noises, Intern. J. Biomath., 2019, 12, 1-32.
Google Scholar
|
[24]
|
D. Zhao and H. Liu, Coexistence in a two species chemostat model with Markov switchings, Appl. Math. Lett., 2019, 94, 266-271. doi: 10.1016/j.aml.2019.03.005
CrossRef Google Scholar
|
[25]
|
C. Zhu and G. Yin, Asympotic properties of hybrid diffusion systems, SIAM J. Contrl Optim., 2007, 46, 1155-1179. doi: 10.1137/060649343
CrossRef Google Scholar
|
[26]
|
X. Zou and K. Wang, Optimal harvesting for a stochastic regime-switching logistic diffusion system with jumps, Nonlinear Anal. Hybrid Syst., 2014, 13, 32-44. doi: 10.1016/j.nahs.2014.01.001
CrossRef Google Scholar
|