2020 Volume 10 Issue 4
Article Contents

Dianli Zhao, Haidong Liu, Yanli Zhou, Sanling Yuan. QUADRATIC HARVESTING DOMINATED OPTIMAL STRATEGY FOR A STOCHASTIC SINGLE-SPECIES MODEL[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1256-1266. doi: 10.11948/20190174
Citation: Dianli Zhao, Haidong Liu, Yanli Zhou, Sanling Yuan. QUADRATIC HARVESTING DOMINATED OPTIMAL STRATEGY FOR A STOCHASTIC SINGLE-SPECIES MODEL[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1256-1266. doi: 10.11948/20190174

QUADRATIC HARVESTING DOMINATED OPTIMAL STRATEGY FOR A STOCHASTIC SINGLE-SPECIES MODEL

  • A stochastic population model with the mixed harvesting strategy is formulated and studied in this paper. Sufficient and necessary conditions for survival of the species are derived firstly. Then, based on the ergodic stationary distribution, the optimal strategy is identified. Results show that the linear harvesting effort threatens to the survival of the species; the quadratic harvesting strategy occupies an absolute advantage in the harvesting and excludes the linear part out of the optimal harvesting strategy. It's interest to see all these occur only in the random environments. Computer simulations are carried out to support the obtained results.
  • 加载中
  • [1] J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 2011, 74, 6601-6616. doi: 10.1016/j.na.2011.06.043

    CrossRef Google Scholar

    [2] J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 1977, 197, 463-465. doi: 10.1126/science.197.4302.463

    CrossRef Google Scholar

    [3] C. W. Clark, Mathematical bioeconomics: the optimal management of renewable resources, Wiley-Interscience, New York, USA, 1976.

    Google Scholar

    [4] C. W. Clark, Bioeconomic modeling and fisheries management, John Wiley & Sons, New York, USA, 1985.

    Google Scholar

    [5] J. Geng, M. Liu and Y. Zhang, Stability of a stochastic one-predator-two-prey population model with time delays, Commun. Nonlin. Scien. Numer. Simul., 2017, 53, 65-82. doi: 10.1016/j.cnsns.2017.04.022

    CrossRef Google Scholar

    [6] R. P. Gupta, M. Banerjee and P. Chandra, Period doubling cascades of prey-predator model with nonlinear harvesting and control of over exploitation through taxation, Commun. Nonlin. Scien. Numer. Simul., 2014, 19, 2382-2405. doi: 10.1016/j.cnsns.2013.10.033

    CrossRef Google Scholar

    [7] R. P. Gupta and P. Chandra, Dynamical properties of a prey-predator-scavenger model with quadratic harvesting, 2017, 49, 202-214.

    Google Scholar

    [8] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 2001, 43, 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [9] D. Li, The stationary distribution and ergodicity of a stochastic generalized logistic system, Statist. Probab. Lett., 2013, 83, 580-583. doi: 10.1016/j.spl.2012.11.006

    CrossRef Google Scholar

    [10] M. Li, B. Chen and H. Ye, A bioeconomic differential algebraic predator-prey model with nonlinear prey harvesting, Applied Mathematical Modelling, 2017, 42, 17-28. doi: 10.1016/j.apm.2016.09.029

    CrossRef Google Scholar

    [11] W. Li and K. Wang, Optimal harvesting policy for general stochastic Logistic population model, J. Math. Anal. Appl., 2010, 368, 420-428. doi: 10.1016/j.jmaa.2010.04.002

    CrossRef Google Scholar

    [12] M. Liu, Optimal harvesting policy of a stochastic predator-prey model with time delay, Appl. Math. Lett., 2015, 48, 102-108. doi: 10.1016/j.aml.2014.10.007

    CrossRef Google Scholar

    [13] M. Liu and C. Bai, Optimal harvesting of a stochastic logistic model with time delay, J. Nonlinear Sci., 2015, 25, 277-289. doi: 10.1007/s00332-014-9229-2

    CrossRef Google Scholar

    [14] M. Liu and M. Deng, Analysis of a stochastic hybrid population model with Allee effect, Appl. Math. Comp., 2020, 364, 124582.https://doi.org/10.1016/j.amc.2019.124582. doi: 10.1016/j.amc.2019.124582

    CrossRef Google Scholar

    [15] L. Liu and X. Meng, Optimal harvesting control and dynamics of two-species stochastic model with delays, Adv Differ Equ., 2017, 2017, 18. https://doi.org/10.1186/s13662-017-1077-6. doi: 10.1186/s13662-017-1077-6

    CrossRef Google Scholar

    [16] J. Lv, Y. Zhang and X. Zou, Recurrence and strong stochastic persistence of a stochastic single-species model, Applied Mathematics Letters, 2019, 89, 64-69. doi: 10.1016/j.aml.2018.09.007

    CrossRef Google Scholar

    [17] X. Mao and C. Yuan, Stochastic differential equations with Markovian switching, Imperial College Press, London, 2006.

    Google Scholar

    [18] R. M. May, J. R. Beddington, J. W. Horwood and J. G. Shepherd, Exploiting natural populations in an uncertain world, Math. Biosci., 1978, 42, 219-252. doi: 10.1016/0025-5564(78)90097-4

    CrossRef Google Scholar

    [19] P. Panja, S. K. Mondal and D. K. Jana, Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics and harvesting, Chaos, Solitons and Fractals, 2017, 104, 389-399. doi: 10.1016/j.chaos.2017.08.036

    CrossRef Google Scholar

    [20] J. G. Shepherd and J. W. Horwood, The sensitivity of exploited populations to environmental noise, and the implications for management, J. Cons. Int. Explor. Mer., 1979, 38, 318-323. doi: 10.1093/icesjms/38.3.318

    CrossRef Google Scholar

    [21] R. K. Upadhyay, P. Roy and J. Datta, Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability, 2015, 79, 2251-2270.

    Google Scholar

    [22] H. Wang and M. Liu, Stationary distribution of a stochastic hybrid phytoplankton-zooplankton model with toxin-producing phytoplankton, Appl. Math. Lett., 2020, 101, 106077. https://doi.org/10.1016/j.aml.2019.106077. doi: 10.1016/j.aml.2019.106077

    CrossRef Google Scholar

    [23] D. Zhao, S. Yuan and H. Liu, Stochastic dynamics of the delayed chemostat with Levy noises, Intern. J. Biomath., 2019, 12, 1-32.

    Google Scholar

    [24] D. Zhao and H. Liu, Coexistence in a two species chemostat model with Markov switchings, Appl. Math. Lett., 2019, 94, 266-271. doi: 10.1016/j.aml.2019.03.005

    CrossRef Google Scholar

    [25] C. Zhu and G. Yin, Asympotic properties of hybrid diffusion systems, SIAM J. Contrl Optim., 2007, 46, 1155-1179. doi: 10.1137/060649343

    CrossRef Google Scholar

    [26] X. Zou and K. Wang, Optimal harvesting for a stochastic regime-switching logistic diffusion system with jumps, Nonlinear Anal. Hybrid Syst., 2014, 13, 32-44. doi: 10.1016/j.nahs.2014.01.001

    CrossRef Google Scholar

Figures(4)  /  Tables(1)

Article Metrics

Article views(2501) PDF downloads(464) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint