| [1] | G. Aronsson and U. Janfalk, On Hele-Shaw flow of power-law fluids, Eur. J. Appl. Math., 1992, 3(4), 343-366. doi: 10.1017/S0956792500000905 							CrossRef							Google Scholar
							
						 | 
					
									| [2] | Z. Bai, Z. Du and S. Zhang, Iterative method for a class of fourth-order p-Laplacian beam equation, Journal of Applied Analysis and Computation, 2019, 9(4), 1443-1453. 							Google Scholar
							
						 | 
					
									| [3] | F. Browder, Existence theorems for nonlinear partial differential equations, Proc. Sympos. Pure Math., Vol. 16, Amer. Math. Sot., Providence, RI, 1970. 							Google Scholar
							
						 | 
					
									| [4] | L. Chen, C. Chen, H. Yang and H. Song, Infinite radial solutions for the fractional Kirchhoff equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 2019,113(3), 2309-2318. 							Google Scholar
							
						 | 
					
									| [5] | C. Chen and H. Yang, Multiple solutions for a class of quasilinear Schrödinger systems in $\mathbb R.N$, Bull. Malays. Math. Sci. Soc., 2019, 42(2), 611-636. doi: 10.1007/s40840-017-0502-z 							CrossRef							$\mathbb R.N$" target="_blank">Google Scholar
							
						 | 
					
									| [6] | L. Chen, C. Chen, H. Yang and H. Song, Nonexistence of stable solutions for quasilinear Schrödinger equation, Bound. Value Probl., 2018,168, 11. 							Google Scholar
							
						 | 
					
									| [7] | C. Chen, H. Song and H. Yang, Liouville-type theorems for stable solutions of singular quasilinear elliptic equations in $\mathbb R.N$, Electron. J. Differ. Equ., 2018, 2018(81), 1-11. 							$\mathbb R.N$" target="_blank">Google Scholar
							
						 | 
					
									| [8] | C. Chen, H. Song and H. Yang, Liouville type theorems for stable solutions of p-Laplace equation in $\mathbb R.N$, Nonlinear Anal., 2017,160, 44-52. doi: 10.1016/j.na.2017.05.004 							CrossRef							$\mathbb R.N$" target="_blank">Google Scholar
							
						 | 
					
									| [9] | I. J. Díaz, Nonlinear partial differential equations and free boundaries, Vol. Ⅰ. Elliptic equations, Research Notes in Mathematics, 106. Pitman, Boston, MA, 1985. 							Google Scholar
							
						 | 
					
									| [10] | X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of p-Laplacian with fractional derivative, Bound. Value Probl., 2017, 5, 15. 							Google Scholar
							
						 | 
					
									| [11] | R. Dautray and L. J. Lions, Mathematical analysis and numerical methods for science and technology, Vol. 1: Physical origins and classical methods, Springer-Verlag, Berlin, 1985. 							Google Scholar
							
						 | 
					
									| [12] | L. W. Findley, S. Lai and K. Onaran, Creep and relaxation of nonlinear viscoelastic materials, North Holland Publ. House, Amsterdam-New York-Oxford, 1976. 							Google Scholar
							
						 | 
					
									| [13] | X. Hao, H. Wang, L. Liu and Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator, Bound. Value Probl., 2017,182, 18. 							Google Scholar
							
						 | 
					
									| [14] | J. Jiang, D. O'Regan, J. Xu and Y. Cui, Positive solutions for a Hadamard fractional p-Laplacian three-point boundary value problem, Mathematics, 2019, 7(5), 439. doi: 10.3390/math7050439 							CrossRef							Google Scholar
							
						 | 
					
									| [15] | M. L. Kachanov, The theory of creep, National Lending Liberary for science and technology, Boston Spa, Yorkshire, England, 1967. 							Google Scholar
							
						 | 
					
									| [16] | M. L. Kachanov, Foundations of the theory of plasticity, North Holland Publ. House, Amsterdam-London, 1971. 							Google Scholar
							
						 | 
					
									| [17] | H. Lian, D. Wang, Z. Bai and R. P. Agarwal, Periodic and subharmonic solutions for a class of second-order p-Laplacian Hamiltonian systems, Bound. Value Probl., 2014,260, 15. 							Google Scholar
							
						 | 
					
									| [18] | E. Montefusco and V. Rădulescu, Nonlinear eigenvalue problems for quasilinear operators on unbounded domains, Nonlinear Differ. Eua. Appl., 2001, 8(4), 481-497. doi: 10.1007/PL00001460 							CrossRef							Google Scholar
							
						 | 
					
									| [19] | V. Pao, Nonlinear parabolic and elliptic equations, Plenum press, New York, London, 1992. 							Google Scholar
							
						 | 
					
									| [20] | K. Pfluger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differ. Equ., 1998, 1998(10), 1-13. 							Google Scholar
							
						 | 
					
									| [21] | K. Pfluger, Compact traces in weighted Sobolev spaces, Analysis, 1998, 18, 65-83. 							Google Scholar
							
						 | 
					
									| [22] | T. Ren, S. Li, X. Zhang and L. Liu, Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes, Bound. Value Probl., 2017,118, 15. 							Google Scholar
							
						 | 
					
									| [23] | H. P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CMBS Reg. Conf. Ser. Math., 1986, 65. 							Google Scholar
							
						 | 
					
									| [24] | A. Szulkin, Ljusternik-Schnirelmann theory on $C.1$-manifold, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1988, 5(2), 119-139. doi: 10.1016/S0294-1449(16)30348-1 							CrossRef							$C.1$-manifold" target="_blank">Google Scholar
							
						 | 
					
									| [25] | J. Sun, J. Chu and T. Wu, Existence and multiplicity of nontrivial solutions for some biharmonic equations with p-Laplacian, J. Differ. Equ., 2017,262(2), 945-977. 							Google Scholar
							
						 | 
					
									| [26] | K. Sheng, W. Zhang and Z. Bai, Positive solutions to fractional boundary-value problems with p-Laplacian on time scales, Bound. Value Probl., 2018, 70, 15. 							Google Scholar
							
						 | 
					
									| [27] | Y. Tian, S. Sun and Z. Bai, Positive solutions of fractional differential equations with p-Laplacian, J. Funct. Spaces., 2017, 3187492, 9. 							Google Scholar
							
						 | 
					
									| [28] | J. Wu, X. Zhang, L. Liu, Y. Wu and Y. Cui, The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound. Value Probl., 2018, 82, 15. 							Google Scholar
							
						 | 
					
									| [29] | Y. Wang, Y. Liu and Y. Cui, Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian, Bound. Value Probl., 2018, 94, 16. 							Google Scholar
							
						 | 
					
									| [30] | Y. Wei, C. Chen, Q. Chen and H. Yang, Liouville-type theorem for nonlinear elliptic equations involving p-Laplace-type Grushin operators, Math. MethodsAppl. Sci., https://doi.org/10.1002/mma.5886. 							Google Scholar
							
						 | 
					
									| [31] | Y. Wei, C. Chen, H. Song and H. Yang, Liouville-type theorems for stable solutions of Kirchhoff equations with exponential and superlinear nonlinearities, Complex Var. Elliptic Equ., 2019, 64(8), 1297-1309. doi: 10.1080/17476933.2018.1514030 							CrossRef							Google Scholar
							
						 | 
					
									| [32] | Y. Wei, C. Chen, H. Yang and H. Song, Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions, Bound. Value Probl., 2018, 78, 18. 							Google Scholar
							
						 | 
					
									| [33] | Q. Yuan, C. Chen and H. Yang, Existence of positive solutions for a Schrödinger-Poisson system with bounded potential and weighted functions in $\mathbb R.3$, Bound. Value Probl., 2017,151, 17. 							$\mathbb R.3$" target="_blank">Google Scholar
							
						 | 
					
									| [34] | X. Zhang, L. Liu, Y. Wu and Y. Cui, Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger equation with a non-square diffusion term, Appl. Math. Lett., 2017, 74, 85-93. 							Google Scholar
							
						 | 
					
									| [35] | X. Zhang, L. Liu, Y. Wu and Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, J. Math. Anal. Appl., 2018,464(2), 1089-1106. 							Google Scholar
							
						 | 
					
									| [36] | X. Zhang, L. Liu, Y. Wu and Y. Cui, Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electron. J. Differential Equ., 2018, 2018(147), 1-15. 							Google Scholar
							
						 | 
					
									| [37] | X. Zhang, J. Jiang, Y. Wu and Y. Cui, Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows, Appl. Math. Lett., 2019, 90,229-237. 							Google Scholar
							
						 | 
					
									| [38] | X. Zhang, L. Liu, Y. Wu and Y. Cui, New result on the critical exponent for solution of an ordinary fractional differential problem, J. Funct. Spaces, 2017, 3976469, 4. 							Google Scholar
							
						 | 
					
									| [39] | X. Zhang, L. Liu and Y. Wu, The entire large solutions for a quasilinear Schrödinger elliptic equation by the dual approach, Appl. Math. Lett., 2016, 55, 1-9. doi: 10.1016/j.aml.2015.11.005 							CrossRef							Google Scholar
							
						 | 
					
									| [40] | X. Zhang, L. Liu, Y. Wu and L. Caccetta, Entire large solutions for a class of Schrödinger systems with a nonlinear random operator, J. Math. Anal. Appl., 2015,423(2), 1650-1659. doi: 10.1016/j.jmaa.2014.10.068 							CrossRef							Google Scholar
							
						 | 
					
									| [41] | E. Zeidler, The Ljusternik-Schnirelmann theory for indefinite and not necessarily odd nonlinear operators and its applications, Nonlinear Anal. 1980, 4(3), 451-489. doi: 10.1016/0362-546X(80)90085-1 							CrossRef							Google Scholar
							
						 |