[1]
|
G. Aronsson and U. Janfalk, On Hele-Shaw flow of power-law fluids, Eur. J. Appl. Math., 1992, 3(4), 343-366. doi: 10.1017/S0956792500000905
CrossRef Google Scholar
|
[2]
|
Z. Bai, Z. Du and S. Zhang, Iterative method for a class of fourth-order p-Laplacian beam equation, Journal of Applied Analysis and Computation, 2019, 9(4), 1443-1453.
Google Scholar
|
[3]
|
F. Browder, Existence theorems for nonlinear partial differential equations, Proc. Sympos. Pure Math., Vol. 16, Amer. Math. Sot., Providence, RI, 1970.
Google Scholar
|
[4]
|
L. Chen, C. Chen, H. Yang and H. Song, Infinite radial solutions for the fractional Kirchhoff equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 2019,113(3), 2309-2318.
Google Scholar
|
[5]
|
C. Chen and H. Yang, Multiple solutions for a class of quasilinear Schrödinger systems in $\mathbb R.N$, Bull. Malays. Math. Sci. Soc., 2019, 42(2), 611-636. doi: 10.1007/s40840-017-0502-z
CrossRef $\mathbb R.N$" target="_blank">Google Scholar
|
[6]
|
L. Chen, C. Chen, H. Yang and H. Song, Nonexistence of stable solutions for quasilinear Schrödinger equation, Bound. Value Probl., 2018,168, 11.
Google Scholar
|
[7]
|
C. Chen, H. Song and H. Yang, Liouville-type theorems for stable solutions of singular quasilinear elliptic equations in $\mathbb R.N$, Electron. J. Differ. Equ., 2018, 2018(81), 1-11.
$\mathbb R.N$" target="_blank">Google Scholar
|
[8]
|
C. Chen, H. Song and H. Yang, Liouville type theorems for stable solutions of p-Laplace equation in $\mathbb R.N$, Nonlinear Anal., 2017,160, 44-52. doi: 10.1016/j.na.2017.05.004
CrossRef $\mathbb R.N$" target="_blank">Google Scholar
|
[9]
|
I. J. Díaz, Nonlinear partial differential equations and free boundaries, Vol. Ⅰ. Elliptic equations, Research Notes in Mathematics, 106. Pitman, Boston, MA, 1985.
Google Scholar
|
[10]
|
X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of p-Laplacian with fractional derivative, Bound. Value Probl., 2017, 5, 15.
Google Scholar
|
[11]
|
R. Dautray and L. J. Lions, Mathematical analysis and numerical methods for science and technology, Vol. 1: Physical origins and classical methods, Springer-Verlag, Berlin, 1985.
Google Scholar
|
[12]
|
L. W. Findley, S. Lai and K. Onaran, Creep and relaxation of nonlinear viscoelastic materials, North Holland Publ. House, Amsterdam-New York-Oxford, 1976.
Google Scholar
|
[13]
|
X. Hao, H. Wang, L. Liu and Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator, Bound. Value Probl., 2017,182, 18.
Google Scholar
|
[14]
|
J. Jiang, D. O'Regan, J. Xu and Y. Cui, Positive solutions for a Hadamard fractional p-Laplacian three-point boundary value problem, Mathematics, 2019, 7(5), 439. doi: 10.3390/math7050439
CrossRef Google Scholar
|
[15]
|
M. L. Kachanov, The theory of creep, National Lending Liberary for science and technology, Boston Spa, Yorkshire, England, 1967.
Google Scholar
|
[16]
|
M. L. Kachanov, Foundations of the theory of plasticity, North Holland Publ. House, Amsterdam-London, 1971.
Google Scholar
|
[17]
|
H. Lian, D. Wang, Z. Bai and R. P. Agarwal, Periodic and subharmonic solutions for a class of second-order p-Laplacian Hamiltonian systems, Bound. Value Probl., 2014,260, 15.
Google Scholar
|
[18]
|
E. Montefusco and V. Rădulescu, Nonlinear eigenvalue problems for quasilinear operators on unbounded domains, Nonlinear Differ. Eua. Appl., 2001, 8(4), 481-497. doi: 10.1007/PL00001460
CrossRef Google Scholar
|
[19]
|
V. Pao, Nonlinear parabolic and elliptic equations, Plenum press, New York, London, 1992.
Google Scholar
|
[20]
|
K. Pfluger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differ. Equ., 1998, 1998(10), 1-13.
Google Scholar
|
[21]
|
K. Pfluger, Compact traces in weighted Sobolev spaces, Analysis, 1998, 18, 65-83.
Google Scholar
|
[22]
|
T. Ren, S. Li, X. Zhang and L. Liu, Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes, Bound. Value Probl., 2017,118, 15.
Google Scholar
|
[23]
|
H. P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CMBS Reg. Conf. Ser. Math., 1986, 65.
Google Scholar
|
[24]
|
A. Szulkin, Ljusternik-Schnirelmann theory on $C.1$-manifold, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1988, 5(2), 119-139. doi: 10.1016/S0294-1449(16)30348-1
CrossRef $C.1$-manifold" target="_blank">Google Scholar
|
[25]
|
J. Sun, J. Chu and T. Wu, Existence and multiplicity of nontrivial solutions for some biharmonic equations with p-Laplacian, J. Differ. Equ., 2017,262(2), 945-977.
Google Scholar
|
[26]
|
K. Sheng, W. Zhang and Z. Bai, Positive solutions to fractional boundary-value problems with p-Laplacian on time scales, Bound. Value Probl., 2018, 70, 15.
Google Scholar
|
[27]
|
Y. Tian, S. Sun and Z. Bai, Positive solutions of fractional differential equations with p-Laplacian, J. Funct. Spaces., 2017, 3187492, 9.
Google Scholar
|
[28]
|
J. Wu, X. Zhang, L. Liu, Y. Wu and Y. Cui, The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound. Value Probl., 2018, 82, 15.
Google Scholar
|
[29]
|
Y. Wang, Y. Liu and Y. Cui, Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian, Bound. Value Probl., 2018, 94, 16.
Google Scholar
|
[30]
|
Y. Wei, C. Chen, Q. Chen and H. Yang, Liouville-type theorem for nonlinear elliptic equations involving p-Laplace-type Grushin operators, Math. MethodsAppl. Sci., https://doi.org/10.1002/mma.5886.
Google Scholar
|
[31]
|
Y. Wei, C. Chen, H. Song and H. Yang, Liouville-type theorems for stable solutions of Kirchhoff equations with exponential and superlinear nonlinearities, Complex Var. Elliptic Equ., 2019, 64(8), 1297-1309. doi: 10.1080/17476933.2018.1514030
CrossRef Google Scholar
|
[32]
|
Y. Wei, C. Chen, H. Yang and H. Song, Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions, Bound. Value Probl., 2018, 78, 18.
Google Scholar
|
[33]
|
Q. Yuan, C. Chen and H. Yang, Existence of positive solutions for a Schrödinger-Poisson system with bounded potential and weighted functions in $\mathbb R.3$, Bound. Value Probl., 2017,151, 17.
$\mathbb R.3$" target="_blank">Google Scholar
|
[34]
|
X. Zhang, L. Liu, Y. Wu and Y. Cui, Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger equation with a non-square diffusion term, Appl. Math. Lett., 2017, 74, 85-93.
Google Scholar
|
[35]
|
X. Zhang, L. Liu, Y. Wu and Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, J. Math. Anal. Appl., 2018,464(2), 1089-1106.
Google Scholar
|
[36]
|
X. Zhang, L. Liu, Y. Wu and Y. Cui, Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electron. J. Differential Equ., 2018, 2018(147), 1-15.
Google Scholar
|
[37]
|
X. Zhang, J. Jiang, Y. Wu and Y. Cui, Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows, Appl. Math. Lett., 2019, 90,229-237.
Google Scholar
|
[38]
|
X. Zhang, L. Liu, Y. Wu and Y. Cui, New result on the critical exponent for solution of an ordinary fractional differential problem, J. Funct. Spaces, 2017, 3976469, 4.
Google Scholar
|
[39]
|
X. Zhang, L. Liu and Y. Wu, The entire large solutions for a quasilinear Schrödinger elliptic equation by the dual approach, Appl. Math. Lett., 2016, 55, 1-9. doi: 10.1016/j.aml.2015.11.005
CrossRef Google Scholar
|
[40]
|
X. Zhang, L. Liu, Y. Wu and L. Caccetta, Entire large solutions for a class of Schrödinger systems with a nonlinear random operator, J. Math. Anal. Appl., 2015,423(2), 1650-1659. doi: 10.1016/j.jmaa.2014.10.068
CrossRef Google Scholar
|
[41]
|
E. Zeidler, The Ljusternik-Schnirelmann theory for indefinite and not necessarily odd nonlinear operators and its applications, Nonlinear Anal. 1980, 4(3), 451-489. doi: 10.1016/0362-546X(80)90085-1
CrossRef Google Scholar
|