Juan Luo. UNITARILY INVARIANT NORM AND Q-NORM ESTIMATIONS FOR THE MOORE–PENROSE INVERSE OF MULTIPLICATIVE PERTURBATIONS OF MATRICES[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1107-1117. doi: 10.11948/20190206
		                
		                    
		                        | Citation: | Juan Luo. UNITARILY INVARIANT NORM AND Q-NORM ESTIMATIONS FOR THE MOORE–PENROSE INVERSE OF MULTIPLICATIVE PERTURBATIONS OF MATRICES[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1107-1117. doi: 10.11948/20190206 | 
		                
	                
	               	             
	            
	                
	                		                    
	                        
UNITARILY INVARIANT NORM AND Q-NORM ESTIMATIONS FOR THE MOORE–PENROSE INVERSE OF MULTIPLICATIVE PERTURBATIONS OF MATRICES
	                    
	                    
	                    
	                        
	                        	                        		                        		- 
	                        		 		       								
		       											            								1.
	            										  									
		  									  							    	                                    
	                                    Department of Mathematics, Shanghai Normal University, 100 Guilin Rd., 200234 Shanghai, China
	                                     
	                    		                        
	                        	                        		                        		                        		- 
	                                    Corresponding author:
                                    		                                    		                                    			                                    			Email address:luojuan@shnu.edu.cn(J. Luo)	                                    			                                    		                                    	                                
 
	             
	            
	                
	                                     
						                - 
	                    	                     Abstract
	                            Let $B$ be a multiplicative perturbation of $A\in\mathbb{C}^{m\times n}$ given by $B = D_1^* A D_2$, where $D_1\in\mathbb{C}^{m\times m}$ and $D_2\in\mathbb{C}^{n\times n}$ are both nonsingular. New upper bounds for $\Vert B^\dagger-A^\dagger\Vert_U$ and $\Vert B^\dagger-A^\dagger\Vert_Q$ are derived, where $A^\dagger,B^\dagger$ are the Moore-Penrose inverses of $A$ and $B$, and $\Vert \cdot\Vert_U,\Vert \cdot\Vert_Q$ are any unitarily invariant norm and $Q$-norm, respectively. Numerical examples are provided to illustrate the sharpness of the obtained upper bounds.
	                         
- 
		                      
- 
				                    References
	
							
									| [1] | R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997. 							Google Scholar
							
						 |  
									| [2] | L. Cai, W. Xu and W. Li, Additive and multiplicative perturbation bounds for the the Moore-penrose inverse, Linear Algebra Appl., 2011,434(2), 480-489. 							Google Scholar
							
						 |  
									| [3] | C. Deng and H. Du, Common complements of two subspaces and an answer to Groß's question, Acta Mathematica Sinica (Chinese Series), 2006, 49(5), 1099-1112. 							Google Scholar
							
						 |  
									| [4] | N. Hu, W. Luo, C. Song and Q. Xu, Norm estimations for the Moore-Penrose inverse of multiplicative perturbations of matrices, J. Math. Anal. Appl., 2016,437(1), 498-512. 							Google Scholar
							
						 |  
									| [5] | L. Meng and B. Zheng, New multiplicative perturbation bounds of the Moore-Penrose inverse, Linear Multilinear Algebra, 2015, 63(5), 1037-1048. doi: 10.1080/03081087.2014.917643 							CrossRef							Google Scholar
							
						 |  
									| [6] | G. Wang, Y. Wei and S. Qiao, Generalized inverses: theory and computations, Science Press, Beijing, 2004. 							Google Scholar
							
						 |  
									| [7] | P. Å. Wedin, Perturbation theory for pseudo-inverses, Nordisk Tidskr. Informationsbehandling (BIT), 1973, 13(2), 217-232. 							Google Scholar
							
						 |  
									| [8] | H. Yang and P. Zhang, A note on multiplicative perturbation bounds for the Moore-Penrose inverse, Linear Multilinear Algebra, 2014, 62(6), 831-838. doi: 10.1080/03081087.2013.791818 							CrossRef							Google Scholar
							
						 |  
 
 
- 
	                		
                          				        
- 
					    
													 
-