2020 Volume 10 Issue 3
Article Contents

Juan Luo. UNITARILY INVARIANT NORM AND Q-NORM ESTIMATIONS FOR THE MOORE–PENROSE INVERSE OF MULTIPLICATIVE PERTURBATIONS OF MATRICES[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1107-1117. doi: 10.11948/20190206
Citation: Juan Luo. UNITARILY INVARIANT NORM AND Q-NORM ESTIMATIONS FOR THE MOORE–PENROSE INVERSE OF MULTIPLICATIVE PERTURBATIONS OF MATRICES[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1107-1117. doi: 10.11948/20190206

UNITARILY INVARIANT NORM AND Q-NORM ESTIMATIONS FOR THE MOORE–PENROSE INVERSE OF MULTIPLICATIVE PERTURBATIONS OF MATRICES

  • Let $B$ be a multiplicative perturbation of $A\in\mathbb{C}^{m\times n}$ given by $B = D_1^* A D_2$, where $D_1\in\mathbb{C}^{m\times m}$ and $D_2\in\mathbb{C}^{n\times n}$ are both nonsingular. New upper bounds for $\Vert B^\dagger-A^\dagger\Vert_U$ and $\Vert B^\dagger-A^\dagger\Vert_Q$ are derived, where $A^\dagger,B^\dagger$ are the Moore-Penrose inverses of $A$ and $B$, and $\Vert \cdot\Vert_U,\Vert \cdot\Vert_Q$ are any unitarily invariant norm and $Q$-norm, respectively. Numerical examples are provided to illustrate the sharpness of the obtained upper bounds.
    MSC: 34E10, 60H10, 92B05, 92D25
  • 加载中
  • [1] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.

    Google Scholar

    [2] L. Cai, W. Xu and W. Li, Additive and multiplicative perturbation bounds for the the Moore-penrose inverse, Linear Algebra Appl., 2011,434(2), 480-489.

    Google Scholar

    [3] C. Deng and H. Du, Common complements of two subspaces and an answer to Groß's question, Acta Mathematica Sinica (Chinese Series), 2006, 49(5), 1099-1112.

    Google Scholar

    [4] N. Hu, W. Luo, C. Song and Q. Xu, Norm estimations for the Moore-Penrose inverse of multiplicative perturbations of matrices, J. Math. Anal. Appl., 2016,437(1), 498-512.

    Google Scholar

    [5] L. Meng and B. Zheng, New multiplicative perturbation bounds of the Moore-Penrose inverse, Linear Multilinear Algebra, 2015, 63(5), 1037-1048. doi: 10.1080/03081087.2014.917643

    CrossRef Google Scholar

    [6] G. Wang, Y. Wei and S. Qiao, Generalized inverses: theory and computations, Science Press, Beijing, 2004.

    Google Scholar

    [7] P. Å. Wedin, Perturbation theory for pseudo-inverses, Nordisk Tidskr. Informationsbehandling (BIT), 1973, 13(2), 217-232.

    Google Scholar

    [8] H. Yang and P. Zhang, A note on multiplicative perturbation bounds for the Moore-Penrose inverse, Linear Multilinear Algebra, 2014, 62(6), 831-838. doi: 10.1080/03081087.2013.791818

    CrossRef Google Scholar

Tables(2)

Article Metrics

Article views(2019) PDF downloads(428) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint