2020 Volume 10 Issue 6
Article Contents

Ye Cheng, Bao Shi, Bin Wu. ROBUST FIXED-TIME CONSENSUS PROTOCOLS FOR MULTI-AGENT SYSTEMS WITH NONLINEAR STATE MEASUREMENTS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2323-2337. doi: 10.11948/20190208
Citation: Ye Cheng, Bao Shi, Bin Wu. ROBUST FIXED-TIME CONSENSUS PROTOCOLS FOR MULTI-AGENT SYSTEMS WITH NONLINEAR STATE MEASUREMENTS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2323-2337. doi: 10.11948/20190208

ROBUST FIXED-TIME CONSENSUS PROTOCOLS FOR MULTI-AGENT SYSTEMS WITH NONLINEAR STATE MEASUREMENTS

  • This paper solves the robust fixed-time consensus problem for multi-agent systems with nonlinear state measurements. Sufficient conditions are established for the proposed protocol to reach fixed-time consensus under time-varying undirected and fixed directed topology with the aid of Lyapunov functions. It is proved that the finite settling time of the presented protocol for robust consensus is uniformly bounded for any initial condition, which makes it possible for people to design and estimate the convergence time off-line. Numerical simulations are preformed to show the effectiveness of our proposed protocol.
    MSC: 93C10, 93C15, 93D09, 93D40, 93D50
  • 加载中
  • [1] G. Albi, D. Balagué, J. A. Carrillo and J. V. Brecht, Stability analysis of flock and mill rings for second order models in swarming, SIAM J. Appl. Math., 2014, 74(3), 794–818. doi: 10.1137/13091779X

    CrossRef Google Scholar

    [2] D. Bauso and M. Cannon, Consensus in opinion dynamics as a repeated game, Automatica, 2018, 90, 204–211. doi: 10.1016/j.automatica.2017.12.062

    CrossRef Google Scholar

    [3] S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 2000, 38(3), 751–766. doi: 10.1137/S0363012997321358

    CrossRef Google Scholar

    [4] Y. Cheng, X. Wang and B. Shi, Consensus of a two-agent opinion dynamical system with processing delay, Int. J. Biomath., 2018, 11(6), 1850081. doi: 10.1142/S179352451850081X

    CrossRef Google Scholar

    [5] Y. Cheng, B. Shi, W. Zhao and L. Ding, Further improvement of finite-time consensus protocols for detail-balanced networks, J. Appl. Anal. Comput., 2019, 9(5), 1927–1939.

    Google Scholar

    [6] T. Chu, L. Wang, T. Chen and S. Mu, Complex emergent dynamics of anisotropic swarms: Convergence vs oscillation, Chaos Solitons Fractals, 2006, 30(4), 875–885. doi: 10.1016/j.chaos.2005.08.133

    CrossRef Google Scholar

    [7] J. Cortés, Finite-time convergent gradient flows with applications to network consensus, Automatica, 2006, 42(11), 1993–2000. doi: 10.1016/j.automatica.2006.06.015

    CrossRef Google Scholar

    [8] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 2007, 52(5), 852–862. doi: 10.1109/TAC.2007.895842

    CrossRef Google Scholar

    [9] M. Defoort, A. Polyakov, G. Demesure, M. Djemai and K. Veluvolu, Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics, IET Contr. Theory Appl., 2015, 9(14), 2165–2170. doi: 10.1049/iet-cta.2014.1301

    CrossRef Google Scholar

    [10] H. Geng, Z. Chen, C. Zhang, Z. Liu and Q. Zhang, Consensus of heterogeneous multi-agent systems with linear and nonlinear dynamics, J. Appl. Anal. Comput., 2016, 6(1), 1–11.

    Google Scholar

    [11] E. Girejko and A. B. Malinowska, Leader-following consensus for networks with single-and double-integrator dynamics, Nonlinear Anal.-Hybrid Syst., 2019, 31, 302–316. doi: 10.1016/j.nahs.2018.10.007

    CrossRef Google Scholar

    [12] C. Hua, X. Sun, X. You and X. Guan, Finite-time consensus control for second-order multi-agent systems without velocity measurements, Int. J. Syst. Sci., 2017, 48(2), 337–346. doi: 10.1080/00207721.2016.1181224

    CrossRef Google Scholar

    [13] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Google Scholar

    [14] F. Jiang and L. Wang, Finite-time weighted average consensus with respect to a monotonic function and its application, Syst. Control Lett., 2011, 60(9), 718–725. doi: 10.1016/j.sysconle.2011.05.009

    CrossRef Google Scholar

    [15] Y. Kim and M. Mesbahi, On maximizing the second smallest eigenvalue of a state-dependent graph laplacian, IEEE Trans. Autom. Control, 2006, 51(1), 116–120. doi: 10.1109/TAC.2005.861710

    CrossRef Google Scholar

    [16] S. Li, H. Du and X. Lin, Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica, 2011, 47(8), 1706–1712. doi: 10.1016/j.automatica.2011.02.045

    CrossRef Google Scholar

    [17] M. G. Medina-Guevara and A. Gallegos, On S1 as an alternative continuous opinion space in a three-party regime, J. Comput. Appl. Math., 2017, 318(C), 230–241.

    Google Scholar

    [18] K. Ogiwara, T. Fukami and N. Takahashi, Maximizing algebraic connectivity in the space of graphs with fixed number of vertices and edges, IEEE Trans. Control Netw. Syst., 2017, 4(2), 359–368. doi: 10.1109/TCNS.2015.2503561

    CrossRef Google Scholar

    [19] R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 2004, 49(9), 1520–1533. doi: 10.1109/TAC.2004.834113

    CrossRef Google Scholar

    [20] C. Pignotti and I. Reche Vallejo, Flocking estimates for the Cucker–Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 2018, 464(2), 1313–1332.

    Google Scholar

    [21] A. Polyakov, D. Efimov and W. Perruquetti, Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica, 2015, 51, 332–340. doi: 10.1016/j.automatica.2014.10.082

    CrossRef Google Scholar

    [22] H. M. Rodrigues, J. Wu and M. Gameiro, Switching synchronized chaotic systems applied to secure communication, J. Appl. Anal. Comput., 2018, 8(2), 413–426.

    Google Scholar

    [23] V. D. Silva and R. Ghrist, Converage in sensor networks via persistent homology, Algebr. Geom. Topol., 2007, 7(1), 339–358. doi: 10.2140/agt.2007.7.339

    CrossRef Google Scholar

    [24] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 1995, 75(6), 1226–1229. doi: 10.1103/PhysRevLett.75.1226

    CrossRef Google Scholar

    [25] W. Yu, W. Ren, W. X. Zheng, G. Chen and J. Lü, Distributed control gains design for consensus in multi-agent systems, Automatica, 2013, 49(7), 2107–2115. doi: 10.1016/j.automatica.2013.03.005

    CrossRef Google Scholar

    [26] B. Zhu, L. Xie, D. Han, X. Meng and R. Teo, A survey on recent progress in control of swarm systems, Sci. China-Inf. Sci., 2017, 60(7), 070201. doi: 10.1007/s11432-016-9088-2

    CrossRef Google Scholar

    [27] Z. Zuo and L. Tie, A new class of finite-time nonlinear consensus protocols for multi-agent systems, Int. J. Control, 2014, 87(2), 363–370. doi: 10.1080/00207179.2013.834484

    CrossRef Google Scholar

    [28] Z. Zuo, Nonsingular fixed-time consensus tracking for second-order multi-agent networks, Automatica, 2015, 54, 305–309. doi: 10.1016/j.automatica.2015.01.021

    CrossRef Google Scholar

    [29] Z. Zuo, B. Tian, M. Defoort and Z. Ding, Fixed-time consensus tracking for multi-agent systems with high-order integrator dynamics, IEEE Trans. Autom. Control, 2017, 63(2), 563–570.

    Google Scholar

Figures(2)

Article Metrics

Article views(3076) PDF downloads(345) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint