Citation: | Yaqing Sun, Hongjun Gao. WONG-ZAKAI APPROXIMATIONS AND ATTRACTORS FOR FRACTIONAL STOCHASTIC REACTION-DIFFUSION EQUATIONS ON UNBOUNDED DOMAINS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2338-2361. doi: 10.11948/20190215 |
[1] | L. Arnold, Random Dynamical Systems, Springer, Berlin, 1988. |
[2] | Z. Brzezniak, M. Capinski and F. Flandoli, A convergence result for stochastic partial differential equations, Stochastics, 1988, 24(4), 423–445. doi: 10.1080/17442508808833526 |
[3] | Z. Brzezniak, and F. Flandoli, Almost sure approximations of Wong-Zakai type for stochastic partial differential equations, Stochastic Process. Appl., 1995, 55(2), 329–358. doi: 10.1016/0304-4149(94)00037-T |
[4] | H. Gao, M. Garrido-Atienza and B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion, SIAM J. Math. Anal., 2014, 46(4), 2281–2309. doi: 10.1137/130930662 |
[5] |
M. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters $ H\in(\frac{1}{3}, \frac{1}{2}]$, SIAM J. Appl. Dyn. Syst., 2016, 15(1), 625–654. doi: 10.1137/15M1030303
CrossRef $ H\in(\frac{1}{3}, \frac{1}{2}]$" target="_blank">Google Scholar |
[6] | A. Gu, D. Li, B. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $ \mathbb R.n$, J. Differential Equations, 2018, 264(12), 7094–7137. doi: 10.1016/j.jde.2018.02.011 |
[7] | I. Gyongy and A. Shmatkov, Rate of convergence of Wong-Zakai approximations for stochastic partial differential equations, Appl. Math. Optim., 2006, 54(3), 315–341. doi: 10.1007/s00245-006-0873-2 |
[8] | T. Jiang, X. Liu and J. Duan, Approximation for random stable manifolds under multiplicative correlated noises, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(9), 3163–3174. doi: 10.3934/dcdsb.2016091 |
[9] | H. Lu, P. W. Bates, J. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $ \mathbb R.n$, Nonlinear Anal., 2015, 128, 176–198. doi: 10.1016/j.na.2015.06.033 |
[10] | H. Lu, P. W. Bates, S. Lu and M. Zhang, Dynamics of 3D fractional Ginzburg-Laudau equations with multiplicative noise on an unbounded domains, Commun. Math. Sci., 2016, 14(1), 273–295. doi: 10.4310/CMS.2016.v14.n1.a11 |
[11] | J. L. Lions, Quelques Methodes de Resolution des problemes aux Limites Non Lineaires, Dunod, Paris, 1969. |
[12] | H. Lu, J. Qi, B. Wang, and M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dyn. Syst., 2019, 39(2), 683–706. doi: 10.3934/dcds.2019028 |
[13] | K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differential Equations, 2011, 251(2), 2853–2895. |
[14] | K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Diff. Equat., 2019, 31(3), 1341–1371. doi: 10.1007/s10884-017-9626-y |
[15] | K. Lu, B. Wang, and X. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Differential Equations, 2018, 264(1), 378–424. doi: 10.1016/j.jde.2017.09.006 |
[16] | E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the functional Sobolev spaces, Bull. Sci. Math., 2012, 136, 512–573. |
[17] | J. Shen and K. Lu, Wong-Zakai approximations and center manifolds of stochastic differential equations, J.Differential Equations, 2017, 263(8), 4929–4977. doi: 10.1016/j.jde.2017.06.005 |
[18] | J. Shen, J. Zhao, K. Lu and B.Wang, The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, J. Differential Equations, 2019, 266, 4568–4623. doi: 10.1016/j.jde.2018.10.008 |
[19] | G. Tessitore and J. Zabczyk, Wong-Zakai approximations of stochastic evolution equations, J. Evol. Equ., 2006, 6(4), 621–655. doi: 10.1007/s00028-006-0280-9 |
[20] | B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 2012, 253(5), 1544–1583. doi: 10.1016/j.jde.2012.05.015 |
[21] | B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 2014, 14(4), 31. |
[22] | B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 2017, 158, 60–82. doi: 10.1016/j.na.2017.04.006 |
[23] | B. Wang and B. Guo, Asmptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacin principal part, Electron. J. Differential Equations, 2013, 191, 25 pp. |
[24] | R. Wang, Y. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin.Dyn.Syst., 2019, 39(7), 4091–4126. doi: 10.3934/dcds.2019165 |
[25] | E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, Internat. J. Engrg. Sci., 1965, 3, 213–229. doi: 10.1016/0020-7225(65)90045-5 |
[26] | E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 1965, 36(5), 1560–1564. doi: 10.1214/aoms/1177699916 |