2020 Volume 10 Issue 6
Article Contents

Yaqing Sun, Hongjun Gao. WONG-ZAKAI APPROXIMATIONS AND ATTRACTORS FOR FRACTIONAL STOCHASTIC REACTION-DIFFUSION EQUATIONS ON UNBOUNDED DOMAINS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2338-2361. doi: 10.11948/20190215
Citation: Yaqing Sun, Hongjun Gao. WONG-ZAKAI APPROXIMATIONS AND ATTRACTORS FOR FRACTIONAL STOCHASTIC REACTION-DIFFUSION EQUATIONS ON UNBOUNDED DOMAINS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2338-2361. doi: 10.11948/20190215

WONG-ZAKAI APPROXIMATIONS AND ATTRACTORS FOR FRACTIONAL STOCHASTIC REACTION-DIFFUSION EQUATIONS ON UNBOUNDED DOMAINS

  • Corresponding author: Email address: gaohj@hotmail.com (H. Gao)
  • Fund Project: The authors were supported by a NSFC Grant(No. 11531006), PAPD of Jiangsu Higher Education Institutions and Jiangsu Center for Collaborative Innovation in Geographica Information Resource Development and Application
  • In this paper, we investigate the Wong-Zakai approximations induced by a stationary process and the long term behavior of the fractional stochastic reaction-diffusion equation driven by a white noise. Precisely, one of the main ingredients in this paper is to establish the existence and uniqueness of tempered pullback attractors for the Wong-Zakai approximations of fractional stochastic reaction-diffusion equations. Thereafter the upper semi-continuity of attractors for the Wong-Zakai approximation of the equation as $\delta\rightarrow0$ is proved.
    MSC: 60H15, 37H10, 37L55, 37D10
  • 加载中
  • [1] L. Arnold, Random Dynamical Systems, Springer, Berlin, 1988.

    Google Scholar

    [2] Z. Brzezniak, M. Capinski and F. Flandoli, A convergence result for stochastic partial differential equations, Stochastics, 1988, 24(4), 423–445. doi: 10.1080/17442508808833526

    CrossRef Google Scholar

    [3] Z. Brzezniak, and F. Flandoli, Almost sure approximations of Wong-Zakai type for stochastic partial differential equations, Stochastic Process. Appl., 1995, 55(2), 329–358. doi: 10.1016/0304-4149(94)00037-T

    CrossRef Google Scholar

    [4] H. Gao, M. Garrido-Atienza and B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion, SIAM J. Math. Anal., 2014, 46(4), 2281–2309. doi: 10.1137/130930662

    CrossRef Google Scholar

    [5] M. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters $ H\in(\frac{1}{3}, \frac{1}{2}]$, SIAM J. Appl. Dyn. Syst., 2016, 15(1), 625–654. doi: 10.1137/15M1030303

    CrossRef $ H\in(\frac{1}{3}, \frac{1}{2}]$" target="_blank">Google Scholar

    [6] A. Gu, D. Li, B. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $ \mathbb R.n$, J. Differential Equations, 2018, 264(12), 7094–7137. doi: 10.1016/j.jde.2018.02.011

    CrossRef $ \mathbb R.n$" target="_blank">Google Scholar

    [7] I. Gyongy and A. Shmatkov, Rate of convergence of Wong-Zakai approximations for stochastic partial differential equations, Appl. Math. Optim., 2006, 54(3), 315–341. doi: 10.1007/s00245-006-0873-2

    CrossRef Google Scholar

    [8] T. Jiang, X. Liu and J. Duan, Approximation for random stable manifolds under multiplicative correlated noises, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(9), 3163–3174. doi: 10.3934/dcdsb.2016091

    CrossRef Google Scholar

    [9] H. Lu, P. W. Bates, J. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $ \mathbb R.n$, Nonlinear Anal., 2015, 128, 176–198. doi: 10.1016/j.na.2015.06.033

    CrossRef $ \mathbb R.n$" target="_blank">Google Scholar

    [10] H. Lu, P. W. Bates, S. Lu and M. Zhang, Dynamics of 3D fractional Ginzburg-Laudau equations with multiplicative noise on an unbounded domains, Commun. Math. Sci., 2016, 14(1), 273–295. doi: 10.4310/CMS.2016.v14.n1.a11

    CrossRef Google Scholar

    [11] J. L. Lions, Quelques Methodes de Resolution des problemes aux Limites Non Lineaires, Dunod, Paris, 1969.

    Google Scholar

    [12] H. Lu, J. Qi, B. Wang, and M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dyn. Syst., 2019, 39(2), 683–706. doi: 10.3934/dcds.2019028

    CrossRef Google Scholar

    [13] K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differential Equations, 2011, 251(2), 2853–2895.

    Google Scholar

    [14] K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Diff. Equat., 2019, 31(3), 1341–1371. doi: 10.1007/s10884-017-9626-y

    CrossRef Google Scholar

    [15] K. Lu, B. Wang, and X. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Differential Equations, 2018, 264(1), 378–424. doi: 10.1016/j.jde.2017.09.006

    CrossRef Google Scholar

    [16] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the functional Sobolev spaces, Bull. Sci. Math., 2012, 136, 512–573.

    Google Scholar

    [17] J. Shen and K. Lu, Wong-Zakai approximations and center manifolds of stochastic differential equations, J.Differential Equations, 2017, 263(8), 4929–4977. doi: 10.1016/j.jde.2017.06.005

    CrossRef Google Scholar

    [18] J. Shen, J. Zhao, K. Lu and B.Wang, The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, J. Differential Equations, 2019, 266, 4568–4623. doi: 10.1016/j.jde.2018.10.008

    CrossRef Google Scholar

    [19] G. Tessitore and J. Zabczyk, Wong-Zakai approximations of stochastic evolution equations, J. Evol. Equ., 2006, 6(4), 621–655. doi: 10.1007/s00028-006-0280-9

    CrossRef Google Scholar

    [20] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 2012, 253(5), 1544–1583. doi: 10.1016/j.jde.2012.05.015

    CrossRef Google Scholar

    [21] B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 2014, 14(4), 31.

    Google Scholar

    [22] B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 2017, 158, 60–82. doi: 10.1016/j.na.2017.04.006

    CrossRef Google Scholar

    [23] B. Wang and B. Guo, Asmptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacin principal part, Electron. J. Differential Equations, 2013, 191, 25 pp.

    Google Scholar

    [24] R. Wang, Y. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin.Dyn.Syst., 2019, 39(7), 4091–4126. doi: 10.3934/dcds.2019165

    CrossRef Google Scholar

    [25] E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, Internat. J. Engrg. Sci., 1965, 3, 213–229. doi: 10.1016/0020-7225(65)90045-5

    CrossRef Google Scholar

    [26] E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 1965, 36(5), 1560–1564. doi: 10.1214/aoms/1177699916

    CrossRef Google Scholar

Article Metrics

Article views(3448) PDF downloads(495) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint