2020 Volume 10 Issue 6
Article Contents

Jihua Yang. ON THE NUMBER OF LIMIT CYCLES BY PERTURBING A PIECEWISE SMOOTH HAMILTON SYSTEM WITH TWO STRAIGHT LINES OF SEPARATION[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2362-2380. doi: 10.11948/20190220
Citation: Jihua Yang. ON THE NUMBER OF LIMIT CYCLES BY PERTURBING A PIECEWISE SMOOTH HAMILTON SYSTEM WITH TWO STRAIGHT LINES OF SEPARATION[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2362-2380. doi: 10.11948/20190220

ON THE NUMBER OF LIMIT CYCLES BY PERTURBING A PIECEWISE SMOOTH HAMILTON SYSTEM WITH TWO STRAIGHT LINES OF SEPARATION

  • Corresponding author: Email: jihua1113@163.com(J. Yang)
  • Fund Project: The author was supported by National Natural Science Foundation of China(11701306), Construction of First-class Disciplines of Higher Education of Ningxia(Pedagogy)(NXYLXK2017B11), Natural Science Foundation of Ningxia (2019AAC03247) and Higher Education Science and Technology Program of Ningxia(NGY2020074)
  • This paper deals with the problem of limit cycle bifurcations for a piecewise smooth Hamilton system with two straight lines of separation. By analyzing the obtained first order Melnikov function, we give upper and lower bounds of the number of limit cycles bifurcating from the period annulus between the origin and the generalized homoclinic loop. It is found that the first order Melnikov function is more complicated than in the case with one straight line of separation and more limit cycles can be bifurcated.
    MSC: 34C07, 34C05
  • 加载中
  • [1] X. Cen, C. Liu, L. Yang and M. Zhang, Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential systems, J. Diff. Eqs., 2018, 265, 6083–6126.

    Google Scholar

    [2] X. Cen, S. Li and Y. Zhao, On the number of limit cycles for a class of discontinuous quadratic differetnial systems, J. Math. Anal. Appl., 2017, 449, 314–342. doi: 10.1016/j.jmaa.2016.11.033

    CrossRef Google Scholar

    [3] X. Chen, J. Llibre and W. Zhang, Averaging approach to cyclicity of Hopf bifurcation in planar lineat-quadratic polynomial discontunuous differential systems, Discrete Continuous Dynamical Systems Series B, 2017, 22, 3953–3965. doi: 10.3934/dcdsb.2017203

    CrossRef Google Scholar

    [4] B. Coll, A. Gasull and R. Prohens, Degenerate Hopf bifurcation in discontinuous planar systems, J. Math. Anal. Appl., 2001, 253, 671–690. doi: 10.1006/jmaa.2000.7188

    CrossRef Google Scholar

    [5] G. Dong and C. Liu, Note on limit cycles for m-piecewise discontinuous polynomial Liénard differential equations, Z. Angew. Math. Phys., 2017, 68, 97, 8pp. doi: 10.1007/s00033-017-0844-2

    CrossRef Google Scholar

    [6] F. Filippov, Differential equations with discontinuous righthand sides, Kluwer Academic, Netherlands, 1988.

    Google Scholar

    [7] Y. Gao, L. Peng and C. Liu, Bifurcation of limit cycles from a class of piecewise smooth systems with two vertical straight lines of singularity, Int. J. Bifur. Chaos, 2017, 27, 1750157 (13 pages).

    Google Scholar

    [8] M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 2017, 7, 788–794.

    Google Scholar

    [9] M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 2015, 5, 809–815.

    Google Scholar

    [10] M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Diff. Eqs., 2010, 248, 2399–2416. doi: 10.1016/j.jde.2009.10.002

    CrossRef Google Scholar

    [11] N. Hu and Z. Du, Bifurcation of periodic orbits emanated from a vertex in discontinuous planar systems, Commun. Nonlinear Sci. Numer. Simulat., 2013, 18, 3436–3448.

    Google Scholar

    [12] J. Itikawa, J. Llibre, A. Mereu and R. Oliveira, Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones, Discrete and Continuous Dynamical Systems Series B, 2017, 22, 3259–3272. doi: 10.3934/dcdsb.2017136

    CrossRef Google Scholar

    [13] M. Kukucka, Non-smooth dynamical systems, Springer-Verlag, Berlin, Heidelberg, 2000.

    Google Scholar

    [14] S. Li and C. Liu, A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system, J. Math. Anal. Appl., 2015, 428, 1354–1367.

    Google Scholar

    [15] F. Liang, M. Han and V. Romanovski, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 2012, 75, 4355–4374. doi: 10.1016/j.na.2012.03.022

    CrossRef Google Scholar

    [16] Y. Liu and V. Romanovski, Limit cycle bifurcations in a class of piecewise smooth systems with a double homoclinic loop, Appl. Math. Comput., 2014, 248, 235–245.

    Google Scholar

    [17] X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 2010, 20, 1379–1390. doi: 10.1142/S021812741002654X

    CrossRef Google Scholar

    [18] J. Llibre and A. Mereu, Limit cycles for discontinuous quadratic differetnial systems, J. Math. Anal. Appl., 2014, 413, 763–775. doi: 10.1016/j.jmaa.2013.12.031

    CrossRef Google Scholar

    [19] J. Llibre, A. Mereu and D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Diff. Eqs., 2015, 258, 4007–4032. doi: 10.1016/j.jde.2015.01.022

    CrossRef Google Scholar

    [20] J. Llibre, D. Novaes and M. Teixeira, On the birth of limit cycles for non-smooth dynamical systems, Bull. Sci. Math., 2015, 139, 229–244. doi: 10.1016/j.bulsci.2014.08.011

    CrossRef Google Scholar

    [21] J. Llibre and M. Teixerira, Limit cycles for m-piecewise discontinuous polynomial Liénard differential equations, Z. Angew. Math. Phys., 2015, 66, 51–66. doi: 10.1007/s00033-013-0393-2

    CrossRef Google Scholar

    [22] Y. Wang, M. Han and D. Constantinescu, On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos Solitons Fractals, 2016, 83, 158–177. doi: 10.1016/j.chaos.2015.11.041

    CrossRef Google Scholar

    [23] L. Wei, F. Liang and S. Lu, Limit cycle bifurcations near a generalized homoclinic loop in piecewise smooth systems with a hyperbolic saddle on a switch line, Appl. Math. Comput., 2014, 243, 298–310.

    Google Scholar

    [24] Y. Xiong, Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters, J. Math. Anal. Appl., 2015, 421, 260–275. doi: 10.1016/j.jmaa.2014.07.013

    CrossRef Google Scholar

    [25] Y. Xiong, Limit cycle bifurcations by perturbing non-smooth Hamiltonian systems with 4 switching lines via multiple parameters, Nonlinear Analysis: Real World Applications, 2018, 41, 384–400. doi: 10.1016/j.nonrwa.2017.10.020

    CrossRef Google Scholar

    [26] Y. Xiong and J. Hu, Limit cycle bifurcations in perturbations of planar piecewise smooth systems with multiply lines of critical points, J. Math. Anal. Appl., 2019, 474, 194–218. doi: 10.1016/j.jmaa.2019.01.039

    CrossRef Google Scholar

    [27] J. Yang and L. Zhao, Limit cycle bifurcations for piecewise smooth Hamiltonian systems with a generalized eye-figure loop, Int. J. Bifur. Chaos, 2016, 26, 1650204(14pages).

    Google Scholar

    [28] J. Yang and L. Zhao, Limit cycle bifurcations for piecewise smooth integrable differential systems, Discrete and Continuous Dynamical Systems Series B, 2017, 22, 2417–2425. doi: 10.3934/dcdsb.2017123

    CrossRef Google Scholar

    [29] J. Yang and L. Zhao, Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations, J. Diff. Eqs., 2018, 264, 5734–5757. doi: 10.1016/j.jde.2018.01.017

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(2611) PDF downloads(370) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint