2020 Volume 10 Issue 6
Article Contents

Yanyan Zhang, Yu Zhang. INTERACTIONS OF DELTA SHOCK WAVES FOR A CLASS OF NONSTRICTLY HYPERBOLIC SYSTEM OF CONSERVATION LAWS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2381-2399. doi: 10.11948/20190228
Citation: Yanyan Zhang, Yu Zhang. INTERACTIONS OF DELTA SHOCK WAVES FOR A CLASS OF NONSTRICTLY HYPERBOLIC SYSTEM OF CONSERVATION LAWS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2381-2399. doi: 10.11948/20190228

INTERACTIONS OF DELTA SHOCK WAVES FOR A CLASS OF NONSTRICTLY HYPERBOLIC SYSTEM OF CONSERVATION LAWS

  • Corresponding author: Email address:zyy@xynu.edu.cn(Y. Zhang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11501488, 11801490), the Scientific Research Foundation of Xinyang Normal University(No. 0201318), Nan Hu Young Scholar Supporting Program of XYNU, Yunnan Applied Basic Research Projects (2018FD015) and the Scientific Research Foundation Project of Yunnan Education Department (2018JS150)
  • In this paper, we study the perturbed Riemann problem for a class of nonstrictly hyperbolic system of conservation laws, and focuse on the interactions of delta shock waves with the shock waves and the rarefaction waves. The global solutions are constructed completely with the method of splitting delta function. In solutions, we find a new kind of nonclassical wave, which is called delta contact discontinuity with Dirac delta function in both components. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. Moreover, by letting perturbed parameter " tend to zero, we analyze the stability of Riemann solutions.
    MSC: 35L65, 35L67
  • 加载中
  • [1] Y. Brenier, Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas dynamics, J. Math. Fluid Mech., 2005, 7, S326–S331. doi: 10.1007/s00021-005-0162-x

    CrossRef Google Scholar

    [2] Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 1998, 35(6), 2317–2328. doi: 10.1137/S0036142997317353

    CrossRef Google Scholar

    [3] A. Bressan, Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem, Oxford Lecture Ser. Math. Appl., Vol. 20. Oxford University Press, Oxford, 2000.

    Google Scholar

    [4] G. Chen and H. Liu, Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations, SIAM J. Math. Anal., 2003, 34(4), 925–938. doi: 10.1137/S0036141001399350

    CrossRef Google Scholar

    [5] H. Cheng and H. Yang, Delta shock waves in chromatography equations, J. Math. Anal. Appl., 2011, 380(2), 475–485. doi: 10.1016/j.jmaa.2011.04.002

    CrossRef Google Scholar

    [6] V. G. Danilov and D. Mitrovic, Delta shock wave formation in the case of triangular hyperbolic system of conservation laws, J. Differential Equations, 2008, 245(12), 3704–3734.

    Google Scholar

    [7] B. Engquist and O. Runborg, Multiphase computations in geometrical optics, J. Comput. Appl. Math., 1996, 74, 175–192. doi: 10.1016/0377-0427(96)00023-4

    CrossRef Google Scholar

    [8] P. Le Floch, An existence and uniqueness result for two nonstrictly hyperbolic systems, IMA Vol. Math. Appl., Vol. 27. Springer-Verlag, Berlin/New York, 1990.

    Google Scholar

    [9] L. Guo, L. Pan and G. Yin, The perturbed Riemann problem and delta contact discontinuity in chromatography equations, Nonlinear Analysis, 2014, 106, 110–123. doi: 10.1016/j.na.2014.04.016

    CrossRef Google Scholar

    [10] L. Guo, Y. Zhang and G. Yin, Interactions of delta shock waves for the Chaplygin gas equations with split delta functions, J. Math. Anal. Appl., 2014, 410(1), 190–201. doi: 10.1016/j.jmaa.2013.07.082

    CrossRef Google Scholar

    [11] F. Huang and Z Wang, Well-posedness for pressureless flow, Commun. Math. Phys., 2001, 222(1), 117–146.

    Google Scholar

    [12] B. L. Keyfitz and H. C. Kranzer, A viscosity approximation to a system of conservation laws with no classical Riemann solution, Lecture Notes in Math., Vol. 1402. Springer-Verlag, Berlin-New York, 1989.

    Google Scholar

    [13] D. J. Korchinski, Solution of a Riemann problem for a $2\times2 $ system of conservation laws possessing no classical weak solution, thesis, Adelphi University, 1977.

    Google Scholar

    [14] H. C. Kranzer and B. L. Keyfitz, A strictly hyperbolic system of conservation laws admitting singular shock, IMA Vol. Math. Appl., Vol. 27. Springer-Verlag, Berlin-New York, 1990.

    Google Scholar

    [15] M. Nedeljkov, Delta and singular delta locus for one dimensional systems of conservation laws, Math. Methods Appl. Sci., 2004, 27(8), 931–955. doi: 10.1002/mma.480

    CrossRef Google Scholar

    [16] M. Nedeljkov and M. Oberguggenberger, Interactions of delta shock waves in a strictly hyperbolic system of conservation laws, J. Math. Anal. Appl., 2008, 344(2), 1143–1157. doi: 10.1016/j.jmaa.2008.03.040

    CrossRef Google Scholar

    [17] B. Nilsson, O. S. Rozanova and V. M. Shelkovich, Mass, momentum and energy conservation laws in zero-pressure gas dynamics and $\delta $-shocks, Ⅱ, Appl. Anal., 2011, 90(5), 831–842. doi: 10.1080/00036811.2010.524156

    CrossRef $\delta $-shocks" target="_blank">Google Scholar

    [18] B. Nilsson and V. M. Shelkovich, Mass, momentum and energy conservation laws in zero-pressure gas dynamics and delta-shocks, Appl. Anal., 2011, 90(11), 1677–1689. doi: 10.1080/00036810903569515

    CrossRef Google Scholar

    [19] Y. Pang, Delta shock wave in the compressible Euler equations for a Chaplygin gas, J. Math. Anal. Appl., 2017, 448(1), 245–261. doi: 10.1016/j.jmaa.2016.10.078

    CrossRef Google Scholar

    [20] E. Y. Panov and V. M. Shelkovich, $\delta'-$shock waves as a new type of solutions to systems of conservation laws, J. Differential Equations, 2006, 73(1), 49-86.

    Google Scholar

    [21] A. Sen, T. R. Sekhar and V. D. Sharma, Wave interactions and stability of the Riemann solution for a strictly hyperbolic system of conservation laws, Q. Appl. Math., 2017, 75(3), 539–554. doi: 10.1090/qam/1466

    CrossRef Google Scholar

    [22] S. F. Shandarin and Y. B. Zeldovich, The large-scale structure of the universe: turbulence, intermittency, structure in a selfgravitating medium, Rev. Modern Phys., 1989, 61(2), 185–220. doi: 10.1103/RevModPhys.61.185

    CrossRef Google Scholar

    [23] C. Shen and M. Sun, Stability of the Riemann solutions for a nonstrictly hyperbolic system of conservation laws, Nonlinear Analysis, 2010, 73(10), 3284–3294. doi: 10.1016/j.na.2010.07.008

    CrossRef Google Scholar

    [24] W. Sheng and T. Zhang, The Riemann problem for transportation equation in gas dynamics, Mem. Am. Math. Soc., 1999, 137, 1–77.

    Google Scholar

    [25] M. Sun, Delta shock waves for the chromatography equations as self-similar viscosity limits, Q. Appl. Math., 2011, 69(3), 425–443. doi: 10.1090/S0033-569X-2011-01207-3

    CrossRef Google Scholar

    [26] M. Sun, Interactions of delta shock waves for the chromatography equations, Appl. Math. Lett., 2013, 26(6), 631–637. doi: 10.1016/j.aml.2013.01.002

    CrossRef Google Scholar

    [27] D. Tan and T. Zhang, Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws, I. Four-J cases, Ⅱ. Initial data involving some rarefaction waves, J. Differential Equations, 1994, 111(2), 203–253. doi: 10.1006/jdeq.1994.1081

    CrossRef Google Scholar

    [28] D. Tan, T. Zhang and Y. Zheng, Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conversation laws, J. Differential Equations, 1994, 112(1), 1–32.

    Google Scholar

    [29] G. Wang, One-dimensional nonlinear chromatography system and delta-shock waves, Z. Angew. Math. Phys., 2013, 64(5), 1451–1469. doi: 10.1007/s00033-013-0300-x

    CrossRef Google Scholar

    [30] E. Weinan, Yu. G. Rykov and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in ashesion particle dynamics, Comm. Math. Phys., 1996, 177(2), 349–380. doi: 10.1007/BF02101897

    CrossRef Google Scholar

    [31] H. Yang, Riemann problems for a class of coupled hyperbolic systems of conservation laws, J. Differential Equations, 1999, 159, 447–484. doi: 10.1006/jdeq.1999.3629

    CrossRef Google Scholar

    [32] H. Yang and Y. Zhang, New developments of delta shock waves and its applications in systems of conservation laws, J. Differential Equations, 2012, 252(11), 5951–5993. doi: 10.1016/j.jde.2012.02.015

    CrossRef Google Scholar

    [33] H. Yang and Y. Zhang, Delta shock waves with Dirac delta function in both components for systems of conservation laws, J. Differential Equations, 2014, 257(12), 4369–4402. doi: 10.1016/j.jde.2014.08.009

    CrossRef Google Scholar

    [34] Q. Zhang, Interactions of delta shock waves and stability of Riemann solutions for nonlinear chromatography equations, Z. Angew. Math. Phys., 2016, 67(1), 1451–1469.

    Google Scholar

    [35] Y. Zhang and Y. Zhang, The Riemann problem and interaction of waves in two-dimensional steady zero-pressure adiabatic flow, Internat. J. Non-Linear Mech., 2018, 104, 100–108. doi: 10.1016/j.ijnonlinmec.2018.05.010

    CrossRef Google Scholar

    [36] Y. Zhang and Y. Zhang and J. Wang, Interaction of delta shock waves for the Chaplygin Euler equations of compressible fluid flow with split delta functions, Math. Meth. Appl. Sci., 2018, 41(3), 7678–7697.

    Google Scholar

Figures(4)

Article Metrics

Article views(2904) PDF downloads(290) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint