2020 Volume 10 Issue 5
Article Contents

Shohel Ahmed, Md. Kamrujjaman, Sumaiya Rahman. DYNAMICS OF A VIRAL INFECTIOLOGY UNDER TREATMENT[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1800-1822. doi: 10.11948/20190209
Citation: Shohel Ahmed, Md. Kamrujjaman, Sumaiya Rahman. DYNAMICS OF A VIRAL INFECTIOLOGY UNDER TREATMENT[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1800-1822. doi: 10.11948/20190209

DYNAMICS OF A VIRAL INFECTIOLOGY UNDER TREATMENT

  • This paper deals with a nonlinear model of the viral dynamics which describes the interactions between the human immune system and the virus. The novelty of this work is the introduction of combined treatments in the dynamics to modify the model. We investigate the qualitative behavior of the model and find a threshold parameter that guarantees the asymptotic stability of the equilibrium points, this parameter is known as the basic reproduction number. We estimated the parameters of the model by least-squares minimization between the numerical solution of the system and clinical data of cell cultures. It is also demonstrated that critical drug efficacy in terms of the model parameter is greatly useful to curtail the spreading of the disease.
    MSC: 93A30, 92Bxx, 37N25, 39A30
  • 加载中
  • [1] D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bulletin of Mathematical Biology, 2002, 64(4), 29-64.

    Google Scholar

    [2] A. R. M. Carvalho and C. M. A. Pintoi, Contributions of the latent reservoir and of the pool of long –lived chronically infected CD4$^+$T cells in HIV dynamics: a fractional approach, Proceedings of the ENOC2017, June, 2017.

    Google Scholar

    [3] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 1990, 28, 365-382.

    $R_0$ in models for infectious diseases in heterogeneous populations" target="_blank">Google Scholar

    [4] A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Analysis: Real World Applications, 2010, 11, 2253-2263. doi: 10.1016/j.nonrwa.2009.07.001

    CrossRef Google Scholar

    [5] A. M. Elaiw, T. O. Alade and S. M. Alsulami, Analysis of latent CHIKV dynamics models with general incidence rate and time delays, Journal of Biological Dynamics, 2018, 12(1), 700-730. doi: 10.1080/17513758.2018.1503349

    CrossRef Google Scholar

    [6] A. M. Elaiw, T. O. Alade and S. M. Alsulami, Analysis of within-host CHIKV dynamics models with general incidence rate, International Journal of Biomathematics, 2018, 11(5). Article Number: 1850062.

    Google Scholar

    [7] A. M. Elaiw and N. H. AlShamrani, Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays, Mathematical Methods in the Applied Science, 2018, 36, 125-142.

    Google Scholar

    [8] A. M. Elaiw, A. A. Raezah and S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Advances in Difference Equations, 2018, 2018:414. doi: 10.1186/s13662-018-1869-3

    CrossRef Google Scholar

    [9] S. Engelberg, A Mathematical Introduction to Control Theory, World Scientific Publishing Company, 2015.

    Google Scholar

    [10] L. Gibelli, A. M. Elaiw, M. A. Alghamdi and A. M. Althiabi, Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics, Mathematical Models and Methods in Applied Sciences, 2017, 27, 617-640. doi: 10.1142/S0218202517500117

    CrossRef Google Scholar

    [11] P. Hartman, A lemma in the theory of structural stability of differential equation, Proceedings of the American Mathematical Society, 1960, 11, 610-620. doi: 10.1090/S0002-9939-1960-0121542-7

    CrossRef Google Scholar

    [12] J. M. Heffernan, R. J. Smith and L. M. Wahl, Perspectives on the basic reproductive ratio, Journal of Royal Society, 2005, 2, 281-293.

    Google Scholar

    [13] T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in Virology and Epidemiology, Nonlinear Analysis: Real World Applications, 2012, 13, 1802-1826. doi: 10.1016/j.nonrwa.2011.12.011

    CrossRef Google Scholar

    [14] W. G. Kelley and A. C. Peterson, The Theory of Differential Equations, Springer, New York, 2010.

    Google Scholar

    [15] J. Lasalle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.

    Google Scholar

    [16] S. Lenhart and J. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical and Computational Biology, CRC Press, 2007.

    Google Scholar

    [17] M. A. Nowak and R. May, Virus dynamics: Mathematical principles of Immunology and Virology, Oxford University Press, Oxford, 2000.

    Google Scholar

    [18] P. Paci, R. Carello, M. Bernaschi et al., Immune control of HIV-1 infection after therapy interruption: immediate versus deferred antiretroviral therapy, BMS Infections Diseases, 2009, 9, 1-13. doi: 10.1186/1471-2334-9-1

    CrossRef Google Scholar

    [19] A. S. Perelson, D. E. Kirschner and R. d. Boer, Dynamics of HIV infection of CD4$^+$T cells, Mathematical Biosciences, 1993, 114, 81-125.

    Google Scholar

    [20] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1999.

    Google Scholar

    [21] R. M. Ribeiro, L. Qin, L. L. Chavez et al., Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection, Journal of Virology, 2010, 12, 6096-102.

    Google Scholar

    [22] M. A. Stafford, L. Corey, Y. Cao et al., Estimation of HIV/AIDS parameters, Automatica, 2003, 39, 1983-1988. doi: 10.1016/S0005-1098(03)00220-6

    CrossRef Google Scholar

    [23] M. A. Stafford, L. Corey, Y. Cao et al., Modeling plasma virus concentration during primary HIV infection, Journal of Theoretical Biology, 2010, 203, 285-301.

    Google Scholar

    [24] K. Wang, A. Fan and A. Torres, Global properties of an improved Hepatitis B virus model, Nonlinear Analysis: Real World Applications, 2010, 11, 3131-3138. doi: 10.1016/j.nonrwa.2009.11.008

    CrossRef Google Scholar

Figures(9)  /  Tables(1)

Article Metrics

Article views(2267) PDF downloads(504) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint