[1]
|
D. Applebaum, Lévy Processes and Stochastics Calculus, 2nd edition, Cambridge University Press, 2009.
Google Scholar
|
[2]
|
J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 2011, 74, 6601-6616. doi: 10.1016/j.na.2011.06.043
CrossRef Google Scholar
|
[3]
|
J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 2012, 391, 363-375. doi: 10.1016/j.jmaa.2012.02.043
CrossRef Google Scholar
|
[4]
|
I. Bashkirtseva, L. Ryashko and T. Ryazanova, Analysis of noise-induced bifurcations in the stochastic tritrophic population system, Internat. J. Bifur. Chaos, 2017, 27, 1750208. doi: 10.1142/S021812741750208X
CrossRef Google Scholar
|
[5]
|
I. Bashkirtseva, L. Ryashko and T. Ryazanova, Stochastic sensitivity technique in a persistence analysis of randomly forced population systems with multiple trophic levels, Math. Biosci., 2017, 293, 38-45. doi: 10.1016/j.mbs.2017.08.007
CrossRef Google Scholar
|
[6]
|
I. K. Dassios and K. J. Szajowski, Bayesian optimal control for a nonautonomous stochastic discrete time system, Appl. Math. Comput., 2016, 274, 556-564.
Google Scholar
|
[7]
|
U. Dobramysl, M. Mobilia, M. Pleimling and U. C. Täuber, Stochastic population dynamics in spatially extended predator-prey systems, J. Phys. A, 2018, 51, 063001. doi: 10.1088/1751-8121/aa95c7
CrossRef Google Scholar
|
[8]
|
M. V. Gabriel and B. Denis, Lotka-Volterra systems with stochastic resetting, J. Phys. A, 2018, 51, 405601. doi: 10.1088/1751-8121/aadbc0
CrossRef Google Scholar
|
[9]
|
A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 2011, 71, 876-902. doi: 10.1137/10081856X
CrossRef Google Scholar
|
[10]
|
C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete Cont. Dyn., 2012, 32, 867-889. doi: 10.3934/dcds.2012.32.867
CrossRef Google Scholar
|
[11]
|
D. Jiang, C. Ji, X. Li and D. O'Regan, Analysis of autonomous Lotka-Volterra competition systems with random perturbation, J. Math. Anal. Appl., 2012, 390, 582-595. doi: 10.1016/j.jmaa.2011.12.049
CrossRef Google Scholar
|
[12]
|
F. Li, S. Zhang and X. Meng, Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function, Comp. Appl. Math., 2019, 38, 95. doi: 10.1007/s40314-019-0857-x
CrossRef Google Scholar
|
[13]
|
X. Li and X. Mao, Population dynamical behavior of non-autonomous LotkaVolterra competition systems with random perturbation, Discrete Cont. Dyn., 2009, 24, 523-545. doi: 10.3934/dcds.2009.24.523
CrossRef Google Scholar
|
[14]
|
R. Lipster, A strong law of large numbers for local martingales, Stochastics, 1980, 3, 217-228. doi: 10.1080/17442508008833146
CrossRef Google Scholar
|
[15]
|
G. Liu, H. Qi, Z. Chang and X. Meng, Asymptotic stability of a stochastic May mutualism system, Comput. Math. Appl., 2020, 79(3), 735-745. doi: 10.1016/j.camwa.2019.07.022
CrossRef Google Scholar
|
[16]
|
M. Liu and K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 2014, 410, 750-763. doi: 10.1016/j.jmaa.2013.07.078
CrossRef Google Scholar
|
[17]
|
X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in populations dynamics, Stoch. Proc. Appl., 2002, 97, 95-110. doi: 10.1016/S0304-4149(01)00126-0
CrossRef Google Scholar
|
[18]
|
X. Mao, S. Sabanis and E. Renshaw, Asymptotic behaviour of the stochastic Lotka-Volterra model, J. Math. Anal. Appl., 2003, 287, 41-156.
Google Scholar
|
[19]
|
X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997.
Google Scholar
|
[20]
|
A. Miao, T. Zhang, J. Zhang and C. Wang, Dynamics of a stochastic SIR model with both horizontal and vertical transmission, J. Appl. Anal. Comput., 2018, 8, 1108-1121.
Google Scholar
|
[21]
|
A. Settati and A. Lahrouz, Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput., 2014, 244, 235-243.
Google Scholar
|