2021 Volume 11 Issue 1
Article Contents

Qiumei Zhang, Daqing Jiang. ANALYSIS OF AUTONOMOUS LOTKA-VOLTERRA SYSTEMS BY LÉVY NOISE[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 176-191. doi: 10.11948/20190212
Citation: Qiumei Zhang, Daqing Jiang. ANALYSIS OF AUTONOMOUS LOTKA-VOLTERRA SYSTEMS BY LÉVY NOISE[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 176-191. doi: 10.11948/20190212

ANALYSIS OF AUTONOMOUS LOTKA-VOLTERRA SYSTEMS BY LÉVY NOISE

  • Corresponding author: Email address: daqingjiang2010@hotmail.com(D.Jiang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11801040, 11871473), China Postdoctoral Science Foundation (No. 2018M631861) and Team Project of Jilin Provincial Department of Science and Technology (No. 20200301036RQ)
  • The present paper deals with the problem of autonomous LotkaVolterra systems by L´evy noise. The essential mathematical features are analyzed with the help of the existence and uniqueness of the positive solution, the pth moment boundedness, asymptotic pathwise estimation, extinction, asymptotic stability and persistence by Lyapunov analysis methods. An example of three species predator-prey chain model is presented to illustrate the analytical findings.
    MSC: 60J05, 60J60, 93D05
  • 加载中
  • [1] D. Applebaum, Lévy Processes and Stochastics Calculus, 2nd edition, Cambridge University Press, 2009.

    Google Scholar

    [2] J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 2011, 74, 6601-6616. doi: 10.1016/j.na.2011.06.043

    CrossRef Google Scholar

    [3] J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 2012, 391, 363-375. doi: 10.1016/j.jmaa.2012.02.043

    CrossRef Google Scholar

    [4] I. Bashkirtseva, L. Ryashko and T. Ryazanova, Analysis of noise-induced bifurcations in the stochastic tritrophic population system, Internat. J. Bifur. Chaos, 2017, 27, 1750208. doi: 10.1142/S021812741750208X

    CrossRef Google Scholar

    [5] I. Bashkirtseva, L. Ryashko and T. Ryazanova, Stochastic sensitivity technique in a persistence analysis of randomly forced population systems with multiple trophic levels, Math. Biosci., 2017, 293, 38-45. doi: 10.1016/j.mbs.2017.08.007

    CrossRef Google Scholar

    [6] I. K. Dassios and K. J. Szajowski, Bayesian optimal control for a nonautonomous stochastic discrete time system, Appl. Math. Comput., 2016, 274, 556-564.

    Google Scholar

    [7] U. Dobramysl, M. Mobilia, M. Pleimling and U. C. Täuber, Stochastic population dynamics in spatially extended predator-prey systems, J. Phys. A, 2018, 51, 063001. doi: 10.1088/1751-8121/aa95c7

    CrossRef Google Scholar

    [8] M. V. Gabriel and B. Denis, Lotka-Volterra systems with stochastic resetting, J. Phys. A, 2018, 51, 405601. doi: 10.1088/1751-8121/aadbc0

    CrossRef Google Scholar

    [9] A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 2011, 71, 876-902. doi: 10.1137/10081856X

    CrossRef Google Scholar

    [10] C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete Cont. Dyn., 2012, 32, 867-889. doi: 10.3934/dcds.2012.32.867

    CrossRef Google Scholar

    [11] D. Jiang, C. Ji, X. Li and D. O'Regan, Analysis of autonomous Lotka-Volterra competition systems with random perturbation, J. Math. Anal. Appl., 2012, 390, 582-595. doi: 10.1016/j.jmaa.2011.12.049

    CrossRef Google Scholar

    [12] F. Li, S. Zhang and X. Meng, Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function, Comp. Appl. Math., 2019, 38, 95. doi: 10.1007/s40314-019-0857-x

    CrossRef Google Scholar

    [13] X. Li and X. Mao, Population dynamical behavior of non-autonomous LotkaVolterra competition systems with random perturbation, Discrete Cont. Dyn., 2009, 24, 523-545. doi: 10.3934/dcds.2009.24.523

    CrossRef Google Scholar

    [14] R. Lipster, A strong law of large numbers for local martingales, Stochastics, 1980, 3, 217-228. doi: 10.1080/17442508008833146

    CrossRef Google Scholar

    [15] G. Liu, H. Qi, Z. Chang and X. Meng, Asymptotic stability of a stochastic May mutualism system, Comput. Math. Appl., 2020, 79(3), 735-745. doi: 10.1016/j.camwa.2019.07.022

    CrossRef Google Scholar

    [16] M. Liu and K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 2014, 410, 750-763. doi: 10.1016/j.jmaa.2013.07.078

    CrossRef Google Scholar

    [17] X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in populations dynamics, Stoch. Proc. Appl., 2002, 97, 95-110. doi: 10.1016/S0304-4149(01)00126-0

    CrossRef Google Scholar

    [18] X. Mao, S. Sabanis and E. Renshaw, Asymptotic behaviour of the stochastic Lotka-Volterra model, J. Math. Anal. Appl., 2003, 287, 41-156.

    Google Scholar

    [19] X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997.

    Google Scholar

    [20] A. Miao, T. Zhang, J. Zhang and C. Wang, Dynamics of a stochastic SIR model with both horizontal and vertical transmission, J. Appl. Anal. Comput., 2018, 8, 1108-1121.

    Google Scholar

    [21] A. Settati and A. Lahrouz, Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput., 2014, 244, 235-243.

    Google Scholar

Article Metrics

Article views(2685) PDF downloads(375) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint