2020 Volume 10 Issue 4
Article Contents

Wenjie Cao, Tao Pan. DYNAMICS OF AN IMPULSIVE STOCHASTIC SIR EPIDEMIC MODEL WITH SATURATED INCIDENCE RATE[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1396-1415. doi: 10.11948/20190214
Citation: Wenjie Cao, Tao Pan. DYNAMICS OF AN IMPULSIVE STOCHASTIC SIR EPIDEMIC MODEL WITH SATURATED INCIDENCE RATE[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1396-1415. doi: 10.11948/20190214

DYNAMICS OF AN IMPULSIVE STOCHASTIC SIR EPIDEMIC MODEL WITH SATURATED INCIDENCE RATE

  • In this paper, the dynamics of an impulsive stochastic SIR epidemic model with saturated incidence rate are analyzed. The existence and uniqueness of the global positive solution is proved by constructing the equivalent system without pulses. The threshold which determines the extinction and persistence of the disease is obtained. The global attraction of disease-free periodic solution is addressed. Sufficient condition for the existence of a positive periodic solution is established. These results are supported by computer simulations.
    MSC: 34F05, 37H10, 60H10, 92D25, 92D30
  • 加载中
  • [1] Z. Agur, L. Cojocaru, G. Mazor, et al, Pulse mass measles vaccination across age cohorts, P. Natl. Acad. Sci. USA., 1993, 90(24), 11698–11702. doi: 10.1073/pnas.90.24.11698

    CrossRef Google Scholar

    [2] A. La. Barbera and B. Spagnolo, Spatio-temporal patterns in population dynamics. Physica A, 2002, 314, 120–124. doi: 10.1016/S0378-4371(02)01173-1

    CrossRef Google Scholar

    [3] O. Chichigina, D. Valenti and B. Spagnolo, A simple noise model with memory for biological systems, Fluct. Noise. Lett., 2005, 5(02), L243–L250. doi: 10.1142/S0219477505002616

    CrossRef Google Scholar

    [4] Y. Cai, Y. Kang, M. Banerjee and W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations., 2015, 259(12), 7463–7502. doi: 10.1016/j.jde.2015.08.024

    CrossRef Google Scholar

    [5] O. A. Chichigina, A. A. Dubkov, D. Valenti and B. Spagnolo, Stability in a system subject to noise with regulated periodicity, Phys. Rev. E, 2011, 84(021134), 1–10.

    Google Scholar

    [6] A. D'Onofrio, Pulse vaccination strategy in the SIR epidemic model: Global asymptotic stable eradication in presence of vaccine failures, Math. Comput. Model., 2002, 36(4–5), 473–489. doi: 10.1016/S0895-7177(02)00177-2

    CrossRef Google Scholar

    [7] A. D'Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model, Math. Biosci., 2002, 179(1), 57–72.

    Google Scholar

    [8] A. A. Dubkov and B. Spagnolo, Verhulst model with Lévy white noise excitation, Eur. Phys. J. B, 2008, 65(3), 361–367. doi: 10.1140/epjb/e2008-00337-0

    CrossRef Google Scholar

    [9] A. Fiasconaro, D. Valenti and B. Spagnolo, Noise in ecosystems: A short review, Math. Biosci. Eng., 2004, 1(1), 185–211.

    Google Scholar

    [10] A. Fiasconaro, D. Valenti, B. Spagnolo, et al., Nonmonotonic behavior of spatiotemporal pattern formation in a noisy Lotka-Volterra system, Acta. Phys. Pol. B, 2004, 05(02), L305–L311.

    Google Scholar

    [11] S. Gao, L. Chen, J. Nieto and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 2006, 24(35–36), 6037–6045. doi: 10.1016/j.vaccine.2006.05.018

    CrossRef Google Scholar

    [12] A. Gray, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, Siam. J. Appl. Math., 2011, 71(3), 876–902. doi: 10.1137/10081856X

    CrossRef Google Scholar

    [13] S. Gao, D. Zhong and Z. Yan, Analysis of novel stochastic switched SILI epidemic models with continuous and impulsive control, Physica. A., 2018, 495, 162–171. doi: 10.1016/j.physa.2017.12.050

    CrossRef Google Scholar

    [14] S. Gao, L. Chen and Z. Teng, Pulse vaccination of an SEIR epidemic model with time delay, Nonlinear. Anal-Real., 2008, 9(2), 599–607. doi: 10.1016/j.nonrwa.2006.12.004

    CrossRef Google Scholar

    [15] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, Siam. Rev., 2001, 43(3), 525–546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [16] L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations., 2005, 217(1), 26–53.

    Google Scholar

    [17] Z. Jin, M. Haque and Q. Liu, Pulse vaccination in the periodic infection rate SIR epidemic model, Int. J. Biomath., 2008, 1(4), 409–432. doi: 10.1142/S1793524508000370

    CrossRef Google Scholar

    [18] N. Joseph, S. H. Subba, M. Nelliyanil, et al, A study of the knowledge and attitude towards pulse polio immunization in semi urban areas of South India, Australas. Med. J., 2011, 4(2), 81–86.

    Google Scholar

    [19] R. Khasminskii, Stochastic stability of differential equations, second edition, Springer-Verlag, Berlin, 2012.

    Google Scholar

    [20] Y. Li and J. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlinear. Sci., 2009, 14(5), 2353–2365. doi: 10.1016/j.cnsns.2008.06.024

    CrossRef Google Scholar

    [21] Y. Lin, D. Jiang and T. Liu, Nontrivial periodic solution of a stochastic epidemic model with seasonal variation, Appl. Math. Lett., 2015, 45, 103–107. doi: 10.1016/j.aml.2015.01.021

    CrossRef Google Scholar

    [22] D. Li, S. Liu, J. Cui, Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, J. Differ. Equations., 2017, 263(12), 8873-8915. doi: 10.1016/j.jde.2017.08.066

    CrossRef Google Scholar

    [23] Q. Liu, D. Jiang, T. Hayat and B. Ahmad, Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and Lévy jumps, Nonlinear. Anal-Hybri., 2018, 27, 29–43. doi: 10.1016/j.nahs.2017.08.002

    CrossRef Google Scholar

    [24] G. Liu, X. Wang, X. Meng and S. Gao, Extinction and persistence in mean of a novel delay impulsive stochastic infected predator-prey system with jumps, Complexity, 2017, 2017, 1–15.

    Google Scholar

    [25] X. Lv, X. Meng and X. Wang, Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation, Chaos. Soliton. Fract., 2018, 110, 273–279. doi: 10.1016/j.chaos.2018.03.038

    CrossRef Google Scholar

    [26] M. Liu and K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 2012, 63(5), 871–886. doi: 10.1016/j.camwa.2011.11.003

    CrossRef Google Scholar

    [27] Y. Lin and D. Jiang, Long-time behaviour of a perturbed SIR model by white noise, Discrete. Cont. Dyn-B., 2013, 18(7), 1873–1887.

    Google Scholar

    [28] X. Meng, L. Chen and B. Wu, A delay SIR epidemic model with pulse vaccination and incubation times, Nonlinear. Anal-Real., 2010, 11(1), 88–98.

    Google Scholar

    [29] X. Mao, Stochastic differential equations and applications, Horwood Publishing, Chichester, 1997.

    Google Scholar

    [30] X. Meng and L. Chen, The dynamics of a new SIR epidemic model concerning pulse vaccination strategy, Appl. Math. Comput., 2008, 197(2), 582–597.

    Google Scholar

    [31] X. Meng, L. Wang and T. Zhang, Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment, J. Appl. Anal. Comput., 2016, 6(3), 865–875.

    Google Scholar

    [32] H. Qi, X. Meng and T. Feng, Dynamics analysis of a stochastic non-autonomous one-predatoršCtwo-prey system with Beddington-DeAngelis functional response and impulsive perturbations, Adv. Differ. Equ., 2019, 2019(235), 1–35.

    Google Scholar

    [33] L. Stone, B. Shulgin and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Model., 2000, 31(4–5), 207–215. doi: 10.1016/S0895-7177(00)00040-6

    CrossRef Google Scholar

    [34] D. Valenti, A. Fiasconaro and B. Spagnolo, Pattern formation and spatial correlation induced by the noise in two competing species, Acta. Phys. Pol. B, 2004, 35(4), 1481–1489.

    Google Scholar

    [35] D. Valenti, L. Tranchina, M. Brai, A. Caruso, C. Cosentino and B. Spagnolo, Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy), Ecol. Model., 2008, 213(3–4), 449–462. doi: 10.1016/j.ecolmodel.2008.01.023

    CrossRef Google Scholar

    [36] X. Wang, W. Xu and X. Liu, Stochastic stability of stochastic switched epidemic models with constant and impulsive control schemes, Chaos. Soliton. Fract., 2015, 78, 185–193. doi: 10.1016/j.chaos.2015.06.021

    CrossRef Google Scholar

    [37] F. Wang, X. Wang, S. Zhang and C. Ding, On pulse vaccine strategy in a periodic stochastic SIR epidemic model, Chaos. Soliton. Fract., 2014, 66, 127–135. doi: 10.1016/j.chaos.2014.06.003

    CrossRef Google Scholar

    [38] P. Xia, X. Zheng and D. Jiang, Persistence and nonpersistence of a nonautonomous stochastic mutualism system, Abstr. Appl. Anal., 2013, 2013, 1–13.

    Google Scholar

    [39] Y. Zhao and D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 2014, 34, 90–93. doi: 10.1016/j.aml.2013.11.002

    CrossRef Google Scholar

    [40] X. Zhang, D. Jiang, T. Hayat and B. Ahmad, Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps, Physica. A., 2017, 471, 767–777. doi: 10.1016/j.physa.2016.12.074

    CrossRef Google Scholar

    [41] S. Zhang, X. Meng, T. Feng and T. Zhang, Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear. Anal-Hybri., 2017, 26, 19–37. doi: 10.1016/j.nahs.2017.04.003

    CrossRef Google Scholar

    [42] Y. Zhao and D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 2014, 243, 718–727.

    Google Scholar

Figures(3)

Article Metrics

Article views(3060) PDF downloads(691) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint