[1]
|
A. H. Arnous, M. Mirzazadeh, Q. Zhou, S. P. Moshokoa, A. Biswas and M. Belic, Soliton solutions to resonant nonlinear schrodingers equation with time-dependent coefficients by modified simple equation method, Optik., 2016, 127, 11450–11459. doi: 10.1016/j.ijleo.2016.09.055
CrossRef Google Scholar
|
[2]
|
G. P. Agrawal, Nonlinear Fiber Optics (5th Edition), Academic Press, New York 2013.
Google Scholar
|
[3]
|
A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, CRC Press, Boca Raton, 2006.
Google Scholar
|
[4]
|
A. Biswas, 1-Soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation, Phys. Lett. A., 2009, 373(30), 2546–2548. doi: 10.1016/j.physleta.2009.05.010
CrossRef Google Scholar
|
[5]
|
M. Ekici, A. Sonmezoglu, Q. Zhou, A. Biswas, M. Z. Ullah, M. Asma, S. P. Moshokoa and M. Belic, Optical solitons in DWDM system by extended trial equation method, Optik., 2017, 141, 157–167. doi: 10.1016/j.ijleo.2017.05.057
CrossRef Google Scholar
|
[6]
|
M. Ekici, A. Sonmezoglu, Q. Zhou, S. P. Moshokoa, M. Z. Ullah, A. Biswas and M. Belic, Solitons in magneto-optic waveguides by extended trial function scheme, Superlattices Microstruct., 2017, 107, 197–218. doi: 10.1016/j.spmi.2017.04.021
CrossRef Google Scholar
|
[7]
|
M. Ekici, M. Mirzazadeh, A. Sonmezoglu, M. Z. Ullah, Q. Zhou, S. P. Moshokoa, A. Biswas and M. Belic, Nematicons in liquid crystals by extended trial equation method, J. Nonlinear Opt. Phys. Mater., 2017, 26, 1750005. doi: 10.1142/S0218863517500059
CrossRef Google Scholar
|
[8]
|
M. Ekici, M. Mirzazadeh, A. Sonmezoglu, M. Z. Ullah, Q. Zhou, H. Triki, S. P. Moshokoa and A. Biswas, Optical solitons with anti-cubic nonlinearity by extended trial equation method, Optik., 2017, 136, 368–373. doi: 10.1016/j.ijleo.2017.02.004
CrossRef Google Scholar
|
[9]
|
D. D. Ganji and M. Abdollahzadeh, Exact traveling solutions for the Lax's seventh-order KdV equation by sech method and rational exp-function method, Appl. Math. Comput., 2008, 206(1), 438–444.
Google Scholar
|
[10]
|
X. Geng and Y. Lv, Darboux transformation for an integrable generalization of the nonlinear Schrdinger equation, Nonlinear Dyn., 2012, 69, 1621–1630. doi: 10.1007/s11071-012-0373-7
CrossRef Google Scholar
|
[11]
|
D. D. Ganji and M. Abdollahzadeh, Exact traveling solutions for the Lax's seventh-order KdV equation by sech method and rational exp-function method, Appl. Math. Comput., 2008, 206(1), 438–444.
Google Scholar
|
[12]
|
D. D. Ganji, A. Asgari and Z.Z. Ganji, Exp-function based solution of nonlinear Radhakrishnan, Kundu and Laskshmanan (RKL) equation, Acta Appl. Math., 2008, 104(2), 201–209.
Google Scholar
|
[13]
|
A. Javid and N. Raza, Singular and dark optical solitons to the well posed Lakshmanan, Porsezian, Daniel model, Optik., 2018, 171, 120–129. doi: 10.1016/j.ijleo.2018.06.021
CrossRef Google Scholar
|
[14]
|
R. Kohl, A. Biswas, D. Milovic and E. Zerrad, Optical soliton perturbation in a non-Kerr law media, Opt. Laser Technol., 2008, 40(4), 647–662. doi: 10.1016/j.optlastec.2007.10.002
CrossRef Google Scholar
|
[15]
|
L. Q. Kong and C. Q. Dai, Some discussions about variable separation of nonlinear models using Riccati equation expansion method, Nonlinear Dyn., 2015, 81(3), 1553–1561.
Google Scholar
|
[16]
|
R. Kohl, D. Milovic, E. Zerrad and A. Biswas, Optical solitons by He's variational principle in a non-Kerr law media, J. Infrared Millim. Terahertz Waves., 2009, 30(5), 526–537. doi: 10.1007/s10762-009-9467-9
CrossRef Google Scholar
|
[17]
|
S. Kumar, K. Singh and R. K. Gupta, Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and G'/G-expansion method, Pramana, 2012, 79, 41–60. doi: 10.1007/s12043-012-0284-7
CrossRef Google Scholar
|
[18]
|
R. Kohl, A. Biswas, D. Milovic and E. Zerrad, Optical soliton perturbation in a non-Kerr law media, Opt. Laser Technol., 2008, 40(4), 647–662. doi: 10.1016/j.optlastec.2007.10.002
CrossRef Google Scholar
|
[19]
|
R. Kohl, D. Milovic, E. Zerrad and A. Biswas, Optical solitons by Hes variational principle in a non-Kerr law media, J. Infrared Millim. Terahertz Waves., 2009, 30(5), 526–537. doi: 10.1007/s10762-009-9467-9
CrossRef Google Scholar
|
[20]
|
C. S. Liu, Representations and classification of traveling wave solutions to sinh-Gordon equation, Commun. Theor. Phys., 2008, 49(1), 153–158. doi: 10.1088/0253-6102/49/1/33
CrossRef Google Scholar
|
[21]
|
C. S. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun., 2010, 181(2), 317–324.
Google Scholar
|
[22]
|
M. Mirzazadeh, M. Eslami, E. Zerrad, M. F. Mahmood, A. Biswas and M. Belic, Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli's equation approach, Nonlinear Dyn., 2015, 81(4), 1933–1949.
Google Scholar
|
[23]
|
M. Mirzazadeh, M. Eslami, E. Zerrad, M. F. Mahommd, A. Biswas and M. Belic, Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoullis equation approach, Nonlinear Dyn., 2015, 81(4), 1933–1949. doi: 10.1007/s11071-015-2117-y
CrossRef Google Scholar
|
[24]
|
N. Raza and A. Javid, Optical dark and singular solitons to the Biswas-Milovic equation in nonlinear optics with spatio-temporal dispersion, Optik., 2018, 158, 1049–1057. doi: 10.1016/j.ijleo.2017.12.186
CrossRef Google Scholar
|
[25]
|
V. N. Serkin, A. Hasegawa and T. L. Belyaeva, Nonautonomous solitons in external potentials, Phys. Rev. Lett., 2007, 98, 074102. doi: 10.1103/PhysRevLett.98.074102
CrossRef Google Scholar
|
[26]
|
B. Sturdevant, D. A. Lott and A. Biswas, Topological 1-soliton solution of generalized Radhakrishnan Kundu Lakshmanan equation with nonlinear dispersion, Mod. Phys. Lett. B, 2010, 24, 1825–1831. doi: 10.1142/S0217984910024109
CrossRef Google Scholar
|
[27]
|
A. W. Snyder and D. J. Mitchell, Spatial solitons of the power law nonlinearity, Optics Lett., 1993, 18(2), 101–103. doi: 10.1364/OL.18.000101
CrossRef Google Scholar
|
[28]
|
S. N. Sarkar, Variation analysis of spatial solitons of power law nonlinearity, Fib. Int. Optic., 2001, 20(2), 191–196.
Google Scholar
|
[29]
|
V. A. Vysloukh and N. A. Sukhotskova, Influence of third-order dispersion on the generation of a train of picosecond pulses in fiber waveguides due to self-modulation instability, Sov. J. Quantum Electron., 1987, 17(11), 1509–1511. doi: 10.1070/QE1987v017n11ABEH010977
CrossRef Google Scholar
|
[30]
|
Y. Y. Wang and C. Q. Dai, Caution with respect to `new' variable separation solutions and their corresponding localized structures, Appl. Math. Model., 2016, 40(5–6), 3475–3482. doi: 10.1016/j.apm.2015.09.006
CrossRef Google Scholar
|
[31]
|
G. Q. Xu, Extended auxiliary equation method and its applications to three generalized NLS equations, Abstr. Appl. Anal., 2014, 2014, 1–7.
Google Scholar
|
[32]
|
Y. Xiang, S. Wen, X. Dai, Z. Tang, W. Su and D. Fan, Modulation instability induced by nonlinear dispersion in nonlinear metamaterials, Opt. Lett., 2007, 24(12), 3058–3063.
Google Scholar
|
[33]
|
J. L. Zhang and M. L. Wang, Various exact solutions for two special type RKL models, Chaos Solitons Fractals, 2008, 37(1), 215–226.
Google Scholar
|