[1]
|
R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.
Google Scholar
|
[2]
|
G. Chen and J. Cui, On the error estimates of a hybridizable discontinuous galerkin method for second-order elliptic problem with discontinuous coefficients, IMA Journal of Numerical Analysis, 2019. DOI: 10.1093/imanum/drz003.
CrossRef Google Scholar
|
[3]
|
W. Dai, H. Wang, P. M. Jordan et al., A mathematical model for skin burn injury induced by radiation heating, Int. Jour. Heat and Mass Transfer, 2008, 51(23–24), 5497–5510. doi: 10.1016/j.ijheatmasstransfer.2008.01.006
CrossRef Google Scholar
|
[4]
|
B. Deka, A weak galerkin finite element method for elliptic interface problems with polynomial reduction, Numer. Math. Theor. Meth. Appl., 2018, 11(3), 655–672. doi: 10.4208/nmtma.2017-OA-0078
CrossRef Google Scholar
|
[5]
|
B. Deka and P. Roy, Weak galerkin finite element methods for parabolic interface problems with nonhomogeneous jump conditions, Numer. Funct. Anal. Optim., 2019, 40(3), 259–279. doi: 10.1080/01630563.2018.1549074
CrossRef Google Scholar
|
[6]
|
J. S. Gupta, A posteriori error Analysis of Finite Element Method for Parabolic Interface Problems, Ph.D. thesis, Indian Institute of Technology Guwahati, Guwahati, India, 2015.
Google Scholar
|
[7]
|
T. Lin, Q. Yang and X. Zhang, Partially penalized immersed finite element methods for parabolic interface problems, Numer. Methods Partial Differential Equations, 2015, 31(6), 1925–1947. doi: 10.1002/num.21973
CrossRef Google Scholar
|
[8]
|
L. Mu, J. Wang, X. Ye and S. Zhao, A new weak galerkin finite element method for elliptic interface problems, J. Comput. Phys., 2016, 325, 157–173. doi: 10.1016/j.jcp.2016.08.024
CrossRef Google Scholar
|
[9]
|
J. Wang and X. Ye, A weak galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 2013, 241, 103–115. doi: 10.1016/j.cam.2012.10.003
CrossRef Google Scholar
|
[10]
|
J. Wang and X. Ye, A weak galerkin mixed finite element method for second order elliptic problems, Math. Comp., 2014, 83(289), 2101–2126. doi: 10.1090/S0025-5718-2014-02852-4
CrossRef Google Scholar
|
[11]
|
S. Zhou, F. Gao, B. Li and Z. Sun, Weak galerkin finite element method with second-order accuracy in time for parabolic problems, Appl. Math. Lett., 2019, 90, 118–123. doi: 10.1016/j.aml.2018.10.023
CrossRef Google Scholar
|