2020 Volume 10 Issue 4
Article Contents

Qing Meng, Bin He. BIFURCATION ANALYSIS AND EXACT TRAVELING WAVE SOLUTIONS FOR A GENERIC TWO-DIMENSIONAL SINE-GORDON EQUATION IN NONLINEAR OPTICS[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1443-1463. doi: 10.11948/20190227
Citation: Qing Meng, Bin He. BIFURCATION ANALYSIS AND EXACT TRAVELING WAVE SOLUTIONS FOR A GENERIC TWO-DIMENSIONAL SINE-GORDON EQUATION IN NONLINEAR OPTICS[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1443-1463. doi: 10.11948/20190227

BIFURCATION ANALYSIS AND EXACT TRAVELING WAVE SOLUTIONS FOR A GENERIC TWO-DIMENSIONAL SINE-GORDON EQUATION IN NONLINEAR OPTICS

  • Corresponding author: Email address:hebinhhu@126.com(B. He)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11461022) and Natural Science Foundation of Yunnan Province, China (2014FA037)
  • We focus on investigating a generic two-dimensional sine-Gordon equation in nonlinear optics. Based on a viable transformation, the bifurcation analysis of the equation is carried out in this paper. The phase portraits are given and different kinds of traveling wave solutions are obtained. The analytical results are also numerically simulated.
    MSC: 34C25, 34F10, 35C07, 35C08
  • 加载中
  • [1] A. R. Bishop, Solitons in condensed matter physics, Phys. Scr., 1979, 20(3-4), 409–423. doi: 10.1088/0031-8949/20/3-4/016

    CrossRef Google Scholar

    [2] B. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin, 1971.

    Google Scholar

    [3] A. G. Bratsos, The solution of the two-dimensional sine-Gordon equation using the method of lines, J. Comput. Appl. Math., 2007, 206(1), 251–277.

    Google Scholar

    [4] M. Dehghan, M. Abbaszadeh and A. Mohebbi, The numerical solution of the two-dimensional sinh-Gordonequation via three meshless methods, Eng. Anal. Bound. Elem., 2015, 51(2), 220–235.

    Google Scholar

    [5] M. Dehghan and A. Shokri, A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Mathe. Comput. Simulat., 2008, 79(3), 700–715 doi: 10.1016/j.matcom.2008.04.018

    CrossRef Google Scholar

    [6] M. Dehghan, M. Abbaszadeh and A. Mohebbi, An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng. Anal. Bound. Elem., 2015, 50(1), 412–434.

    Google Scholar

    [7] M. Dehghan and D. Mirzaei, The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation, Comput. Methods Appl. Mech. Engrg., 2008, 197(6–8), 476–486. doi: 10.1016/j.cma.2007.08.016

    CrossRef Google Scholar

    [8] V. G. Dubrovsky and B. G. Konopelchenko, The 2+1 dimensional integrable generalization of the sine-Gordon equation. Ⅱ. Localized solutions, Inverse Probl., 1993, 9(3), 391–416. doi: 10.1088/0266-5611/9/3/003

    CrossRef Google Scholar

    [9] B. Guo and J. Lin, Exact soliton solutions for the interaction of few-cycle-pulse with nonlinear medium, Int. J. Mod. Phys. B, 2016, 30(28–29), 1640013–1–12.

    Google Scholar

    [10] J. Garnier, Length-scale competition for the sine-Gordon kink in a random environment, Phys. Rev. B, 2003, 68(13), 134302–1–11. doi: 10.1103/PhysRevB.68.134302

    CrossRef Google Scholar

    [11] J. H, Variational principle for nano thin film lubrication, J. Nonlinear Sci. Numer. Simul., 2003, 4(3), 313–314.

    Google Scholar

    [12] T. Hao, Application of the Lagrange multiplier method the semi-inverse method to the search for generalized variational principle in quantum mechanics, Int. J. Nonlinear Sci. Numer. Simul., 2003, 4(3), 311–312.

    Google Scholar

    [13] J. He, Preliminary report on the energy balance for nonlinear oscillations, Mech. Res. Commun., 2002, 29(2–3), 107–111. doi: 10.1016/S0093-6413(02)00237-9

    CrossRef Google Scholar

    [14] B. He, Q. Meng, Y. Long and W. Rui, New exact solutions of the double sine-Gordon equation using symbolic computations, Appl. Math. Comput., 2007, 186(2), 1334–1346.

    Google Scholar

    [15] B. He, Q. Meng and Y. Long, The bifurcation and exact peakons, solitary and periodic wave solutions for the Kudryashov-Sinelshchikov equation, Commun. Nonlinear Sci. Numer. Simulat., 2012, 17(11), 4137–4148. doi: 10.1016/j.cnsns.2012.03.007

    CrossRef Google Scholar

    [16] B. He and Q. Meng, Three kinds of periodic wave solutions and their limit forms for a modified KdV-type equation, Nonlinear Dyn., 2016, 86(2), 811–822.

    Google Scholar

    [17] A. D. Jagtap, On spatio-temporal dynamics of sine-Gordon soliton in nonlinear non-homogeneous media using fully implicit spectral element scheme, Appl. Anal., 2019, https://doi.org/10.1080/00036811.2019.1588961.

    Google Scholar

    [18] A. D. Jagtap, E. Saha, J. D. George and A. S. V. Murthy, Revisiting the inhomogeneously driven sine-Gordon equation, Wave Motion, 2017, 73(5), 76–85.

    Google Scholar

    [19] K. B. Joseph and B. V. Baby, Composite mapping method for generation of kinks and solitons in the Klein-Gordon family, Phys. Rev. A, 1984, 29(5), 2899–2901. doi: 10.1103/PhysRevA.29.2899

    CrossRef Google Scholar

    [20] A. D. Jagtap and A. S. V. Murthy, Higher Order Scheme for Two-Dimensional Inhomogeneous sine-Gordon Equation with impulsive forcing, Commun. Nonlinear Sci. Numer. Simulat., 2018, 64(11), 178–197.

    Google Scholar

    [21] M. Kamranian, M. Dehghan and M. Tatari, Study of the two-dimensional sine-Gordon equation arising in Josephson junctions using meshless finite point method, Int. J. Numer. Model. El., 2017, 30(6), 1–16.

    Google Scholar

    [22] J. Li, Geometric properties and exact travelling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonlinear Model. Anal., 2019, 1(1), 1–10.

    Google Scholar

    [23] H. Leblond and D. Mihalache, Ultrashort light bullets described by the two-dimensional sine-Gordon equation, Phys. Rev. E, 2010, 81(6), 063815–1–7. doi: 10.1103/PhysRevA.81.063815

    CrossRef Google Scholar

    [24] S. Lou, Localized excitations of the (2+1)-dimensional sine-Gordon system, J. Phys. A: Math. Gen., 2003, 36(13), 3877–3892. doi: 10.1088/0305-4470/36/13/317

    CrossRef Google Scholar

    [25] Z. Liu and B. Guo, Periodic blow-up solutions and their limit forms for the generalized Camassa-Holm equation, Prog. Nat. Sci., 2008, 18(3), 259–266. doi: 10.1016/j.pnsc.2007.11.004

    CrossRef Google Scholar

    [26] G. Meng, Y. Pan, H. Tan and X. Xie, Analytic solutions for the (2+1)-dimensional generalized sine-Gordon equations in nonlinear optics, Comput. Math. Appl., 2018, 76(6), 1535–1543.

    Google Scholar

    [27] Q. Meng, B. He, W. Rui and Y. Long, New exact solutions of the (n+1)-dimensional sine-Gordon equation using double elliptic equation method, Int. J. Comput. Math., 2010, 87(3), 591–606.

    Google Scholar

    [28] Q. Meng, B. He, Y. Long and W. Rui, Bifurcations of travelling wave solutions for a general Sine-Gordon equation, Chaos Soliton Fract., 2006, 29(2), 483–489.

    Google Scholar

    [29] P. Popov, Interactions of breathers and kink pairs of the double sine-Gordon equation, Comput. Math. Math. Phys., 2014, 54(12), 1876–1885. doi: 10.1134/S0965542514120112

    CrossRef Google Scholar

    [30] R. Radha and M. Lakshmanan, The (2+1)-dimensional sine-Gordon equation: integrability and localized solutions, J. Phys. A: Math. Gen., 1996, 29(7), 1551–1562. doi: 10.1088/0305-4470/29/7/023

    CrossRef Google Scholar

    [31] W. Rui, B. He and Y. Long, The binary F-expansion method and its application for solving the (n+1)-dimensional sine-Gordon equation, Commun. Nonlinear Sci. Numer. Simulat., 2009, 14(4), 1245–1258. doi: 10.1016/j.cnsns.2008.01.018

    CrossRef Google Scholar

    [32] R. Shi, Z. Song, T. Feng, G. Wang and X. Wang, Analytical soliton solutions of the (2+1)-dimensional sine-Gordon equation, Nonlinear Dyn., 2017, 88(1), 255–262.

    Google Scholar

    [33] A. Taleei and M. Dehghan, A pseudo-spectral method that uses an overlapping multidomain technique for the numerical solution of sine-Gordon equation in one and two spatial dimensions, Math. Meth. Appl. Sci., 2014, 37(7), 1909–1923.

    Google Scholar

    [34] N. K. Vitanov, On travelling waves and double-periodic structures in two-dimensional sine-Gordon systems, J. Phys. A, 1996, 29(16), 5195–5207. doi: 10.1088/0305-4470/29/16/036

    CrossRef Google Scholar

    [35] N. K. Vitanov, Breather and soliton wave families for the sine-Gordon equation, Proc. R. Soc. Lond. A, 1998, 454(1977), 2409–2423. doi: 10.1098/rspa.1998.0264

    CrossRef Google Scholar

    [36] H. Zhang and A. Chen, Global phase portraits of symmetrical cubic Hamiltonian systems with a nilpotent singular point, J. Nonlinear Model. Anal., 2019, 1(2), 193–205.

    Google Scholar

Figures(19)

Article Metrics

Article views(2756) PDF downloads(476) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint