[1]
|
A. R. Bishop, Solitons in condensed matter physics, Phys. Scr., 1979, 20(3-4), 409–423. doi: 10.1088/0031-8949/20/3-4/016
CrossRef Google Scholar
|
[2]
|
B. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin, 1971.
Google Scholar
|
[3]
|
A. G. Bratsos, The solution of the two-dimensional sine-Gordon equation using the method of lines, J. Comput. Appl. Math., 2007, 206(1), 251–277.
Google Scholar
|
[4]
|
M. Dehghan, M. Abbaszadeh and A. Mohebbi, The numerical solution of the two-dimensional sinh-Gordonequation via three meshless methods, Eng. Anal. Bound. Elem., 2015, 51(2), 220–235.
Google Scholar
|
[5]
|
M. Dehghan and A. Shokri, A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Mathe. Comput. Simulat., 2008, 79(3), 700–715 doi: 10.1016/j.matcom.2008.04.018
CrossRef Google Scholar
|
[6]
|
M. Dehghan, M. Abbaszadeh and A. Mohebbi, An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng. Anal. Bound. Elem., 2015, 50(1), 412–434.
Google Scholar
|
[7]
|
M. Dehghan and D. Mirzaei, The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation, Comput. Methods Appl. Mech. Engrg., 2008, 197(6–8), 476–486. doi: 10.1016/j.cma.2007.08.016
CrossRef Google Scholar
|
[8]
|
V. G. Dubrovsky and B. G. Konopelchenko, The 2+1 dimensional integrable generalization of the sine-Gordon equation. Ⅱ. Localized solutions, Inverse Probl., 1993, 9(3), 391–416. doi: 10.1088/0266-5611/9/3/003
CrossRef Google Scholar
|
[9]
|
B. Guo and J. Lin, Exact soliton solutions for the interaction of few-cycle-pulse with nonlinear medium, Int. J. Mod. Phys. B, 2016, 30(28–29), 1640013–1–12.
Google Scholar
|
[10]
|
J. Garnier, Length-scale competition for the sine-Gordon kink in a random environment, Phys. Rev. B, 2003, 68(13), 134302–1–11. doi: 10.1103/PhysRevB.68.134302
CrossRef Google Scholar
|
[11]
|
J. H, Variational principle for nano thin film lubrication, J. Nonlinear Sci. Numer. Simul., 2003, 4(3), 313–314.
Google Scholar
|
[12]
|
T. Hao, Application of the Lagrange multiplier method the semi-inverse method to the search for generalized variational principle in quantum mechanics, Int. J. Nonlinear Sci. Numer. Simul., 2003, 4(3), 311–312.
Google Scholar
|
[13]
|
J. He, Preliminary report on the energy balance for nonlinear oscillations, Mech. Res. Commun., 2002, 29(2–3), 107–111. doi: 10.1016/S0093-6413(02)00237-9
CrossRef Google Scholar
|
[14]
|
B. He, Q. Meng, Y. Long and W. Rui, New exact solutions of the double sine-Gordon equation using symbolic computations, Appl. Math. Comput., 2007, 186(2), 1334–1346.
Google Scholar
|
[15]
|
B. He, Q. Meng and Y. Long, The bifurcation and exact peakons, solitary and periodic wave solutions for the Kudryashov-Sinelshchikov equation, Commun. Nonlinear Sci. Numer. Simulat., 2012, 17(11), 4137–4148. doi: 10.1016/j.cnsns.2012.03.007
CrossRef Google Scholar
|
[16]
|
B. He and Q. Meng, Three kinds of periodic wave solutions and their limit forms for a modified KdV-type equation, Nonlinear Dyn., 2016, 86(2), 811–822.
Google Scholar
|
[17]
|
A. D. Jagtap, On spatio-temporal dynamics of sine-Gordon soliton in nonlinear non-homogeneous media using fully implicit spectral element scheme, Appl. Anal., 2019, https://doi.org/10.1080/00036811.2019.1588961.
Google Scholar
|
[18]
|
A. D. Jagtap, E. Saha, J. D. George and A. S. V. Murthy, Revisiting the inhomogeneously driven sine-Gordon equation, Wave Motion, 2017, 73(5), 76–85.
Google Scholar
|
[19]
|
K. B. Joseph and B. V. Baby, Composite mapping method for generation of kinks and solitons in the Klein-Gordon family, Phys. Rev. A, 1984, 29(5), 2899–2901. doi: 10.1103/PhysRevA.29.2899
CrossRef Google Scholar
|
[20]
|
A. D. Jagtap and A. S. V. Murthy, Higher Order Scheme for Two-Dimensional Inhomogeneous sine-Gordon Equation with impulsive forcing, Commun. Nonlinear Sci. Numer. Simulat., 2018, 64(11), 178–197.
Google Scholar
|
[21]
|
M. Kamranian, M. Dehghan and M. Tatari, Study of the two-dimensional sine-Gordon equation arising in Josephson junctions using meshless finite point method, Int. J. Numer. Model. El., 2017, 30(6), 1–16.
Google Scholar
|
[22]
|
J. Li, Geometric properties and exact travelling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonlinear Model. Anal., 2019, 1(1), 1–10.
Google Scholar
|
[23]
|
H. Leblond and D. Mihalache, Ultrashort light bullets described by the two-dimensional sine-Gordon equation, Phys. Rev. E, 2010, 81(6), 063815–1–7. doi: 10.1103/PhysRevA.81.063815
CrossRef Google Scholar
|
[24]
|
S. Lou, Localized excitations of the (2+1)-dimensional sine-Gordon system, J. Phys. A: Math. Gen., 2003, 36(13), 3877–3892. doi: 10.1088/0305-4470/36/13/317
CrossRef Google Scholar
|
[25]
|
Z. Liu and B. Guo, Periodic blow-up solutions and their limit forms for the generalized Camassa-Holm equation, Prog. Nat. Sci., 2008, 18(3), 259–266. doi: 10.1016/j.pnsc.2007.11.004
CrossRef Google Scholar
|
[26]
|
G. Meng, Y. Pan, H. Tan and X. Xie, Analytic solutions for the (2+1)-dimensional generalized sine-Gordon equations in nonlinear optics, Comput. Math. Appl., 2018, 76(6), 1535–1543.
Google Scholar
|
[27]
|
Q. Meng, B. He, W. Rui and Y. Long, New exact solutions of the (n+1)-dimensional sine-Gordon equation using double elliptic equation method, Int. J. Comput. Math., 2010, 87(3), 591–606.
Google Scholar
|
[28]
|
Q. Meng, B. He, Y. Long and W. Rui, Bifurcations of travelling wave solutions for a general Sine-Gordon equation, Chaos Soliton Fract., 2006, 29(2), 483–489.
Google Scholar
|
[29]
|
P. Popov, Interactions of breathers and kink pairs of the double sine-Gordon equation, Comput. Math. Math. Phys., 2014, 54(12), 1876–1885. doi: 10.1134/S0965542514120112
CrossRef Google Scholar
|
[30]
|
R. Radha and M. Lakshmanan, The (2+1)-dimensional sine-Gordon equation: integrability and localized solutions, J. Phys. A: Math. Gen., 1996, 29(7), 1551–1562. doi: 10.1088/0305-4470/29/7/023
CrossRef Google Scholar
|
[31]
|
W. Rui, B. He and Y. Long, The binary F-expansion method and its application for solving the (n+1)-dimensional sine-Gordon equation, Commun. Nonlinear Sci. Numer. Simulat., 2009, 14(4), 1245–1258. doi: 10.1016/j.cnsns.2008.01.018
CrossRef Google Scholar
|
[32]
|
R. Shi, Z. Song, T. Feng, G. Wang and X. Wang, Analytical soliton solutions of the (2+1)-dimensional sine-Gordon equation, Nonlinear Dyn., 2017, 88(1), 255–262.
Google Scholar
|
[33]
|
A. Taleei and M. Dehghan, A pseudo-spectral method that uses an overlapping multidomain technique for the numerical solution of sine-Gordon equation in one and two spatial dimensions, Math. Meth. Appl. Sci., 2014, 37(7), 1909–1923.
Google Scholar
|
[34]
|
N. K. Vitanov, On travelling waves and double-periodic structures in two-dimensional sine-Gordon systems, J. Phys. A, 1996, 29(16), 5195–5207. doi: 10.1088/0305-4470/29/16/036
CrossRef Google Scholar
|
[35]
|
N. K. Vitanov, Breather and soliton wave families for the sine-Gordon equation, Proc. R. Soc. Lond. A, 1998, 454(1977), 2409–2423. doi: 10.1098/rspa.1998.0264
CrossRef Google Scholar
|
[36]
|
H. Zhang and A. Chen, Global phase portraits of symmetrical cubic Hamiltonian systems with a nilpotent singular point, J. Nonlinear Model. Anal., 2019, 1(2), 193–205.
Google Scholar
|