[1]
|
J. Bergh and J. Löfström, Interpolation space. An introduction.grundlehren der mathemati-schen wissenschafen, Springer-Verlag, Berlin-New york, 1976.
Google Scholar
|
[2]
|
T. Cazenave and F. B. Weissler, The cauchy problem for the nonlinear schrödinger equation in $H^s$, Manuscripta Math., 1988, 61(4), 477-494. doi: 10.1007/BF01258601
CrossRef Google Scholar
|
[3]
|
S. T. Demiray and H. Bulut, New soliton solutions of Davey-Stewartson equation with power-law nonlinearity, Opt. and Quant. Electron., 2017, 3, 1-8.
Google Scholar
|
[4]
|
A. Davey and K. Stewartson, On three dimensional packets of surface waves, Proc. Roy. Soc. London Ser. A, 1974, 338(1613), 101-110.
Google Scholar
|
[5]
|
V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech., 1977, 79(04), 703-714. doi: 10.1017/S0022112077000408
CrossRef Google Scholar
|
[6]
|
E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 2000, 277(4), 212-218.
Google Scholar
|
[7]
|
J. M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 1990, 3(2), 475-506.
Google Scholar
|
[8]
|
F. Güngör and C. Özemir, Variable coefficient Davey-Stewartson system with a Kac-Moody-Virasoro symmetry algebra, J. Math. Phys, 2016, 57(6), 101-110.
Google Scholar
|
[9]
|
B. Guo and B. Wang, The cauchy problem for Davey-Stewartson systems Comm. Pure Appl. Math, 1999, 52(12), 1477-1490.
Google Scholar
|
[10]
|
B. Guo and B. Wang, On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems, Science of China (Series A), 2001, 44(8), 994-1002. doi: 10.1007/BF02878975
CrossRef Google Scholar
|
[11]
|
R. Hirota, Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices, J. Math. Phys, 1973, 14(7), 810-814. doi: 10.1063/1.1666400
CrossRef Google Scholar
|
[12]
|
O. M. Kiselev, Asymptotics of soliton solution for the perturbed Davey-Stewartson-1 equations, Physics, 1999.
Google Scholar
|
[13]
|
N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A, 1990, 147(5), 287-291.
Google Scholar
|
[14]
|
C. Klein and N. Stoilov, A numerical study of blow-up mechanisms for Davey-Stewartson Ⅱ systems, Stud. Appl. Math., 2018, DOI: 10.1111/sapm.1221.
Google Scholar
|
[15]
|
F. Linares and G. Ponce, On the D-Stewartson systems, Ann Inst Henri Poincaré, Anal nonlinéaire, 1993, 10(5), 523-548. doi: 10.1016/S0294-1449(16)30203-7
CrossRef Google Scholar
|
[16]
|
W. Ma, A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions, J. Appl. Anal. Comput., 2019, 9(4), 1319-1332.
Google Scholar
|
[17]
|
Muslu and M. Gulcin, Numerical study of blow-up to the purely elliptic generalized DaveyCStewartson system, J. Comput. Appl. Math., 2017, 317, 331-342. doi: 10.1016/j.cam.2016.12.003
CrossRef Google Scholar
|
[18]
|
A. H. Nayfeh, Perturbation Methods, New York, John Wiley and Sons Inc., 1973.
Google Scholar
|
[19]
|
M. Otwinowski, R. Paul, and W. G. Laidlaw, Exact travelling wave solutions of a class of nonlinear diffusion equations by reduction to a quadrature, Phys. Lett. A, 1989, 128(9), 483-487.
Google Scholar
|
[20]
|
A. V. Porubov, Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid layer, Phys. Lett. A, 1996, 221(6), 391-394. doi: 10.1016/0375-9601(96)00598-1
CrossRef Google Scholar
|
[21]
|
A. V. Porubov and D. F. Parker, Some general periodic solutions to coupled nonlinear schrödinger equations, Wave Motion, 1999, 29(2), 97-109. doi: 10.1016/S0165-2125(98)00033-X
CrossRef Google Scholar
|
[22]
|
A. V. Porubov and M. G. Velarde, Exact periodic solutions of the complex Ginzburg-Landau equation, J. Math. Phys., 1999, 40(2), 884-896.
Google Scholar
|
[23]
|
E. S. Selima and Y. Mao and et al, Applicable symbolic computations on dynamics of small-amplitude long waves and Davey-Stewartson equations in finite water depth, Appl. Math. Model., 2018, 57, 376-390.
Google Scholar
|
[24]
|
H. Triebel, Theory of function spaces.Monographs in Mathematics, 1983. DOI, 10.1007/3-7643-7582-5.
Google Scholar
|
[25]
|
M. Tsutsumi, Decay of weak solutions to the Davey-Stewartson systems, J. Math. Anal. Appl., 1994, 182(3), 680-704.
Google Scholar
|
[26]
|
T. Tsuchida, Integrable semi-discretizations of the Davey-Stewartson system and a (2 + 1)-dimensional Yajima-Oikawa system. I, 2019. aiXiv, 1904.07924v1[nlin.SI].
Google Scholar
|
[27]
|
B. Wang, Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data, J. Funct. Anal., 2013, 265(12), 3009-3052. doi: 10.1016/j.jfa.2013.08.009
CrossRef Google Scholar
|
[28]
|
M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 1995, 199(3-4), 169-172. doi: 10.1016/0375-9601(95)00092-H
CrossRef Google Scholar
|
[29]
|
C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 1996, 224(1-2), 77-84. doi: 10.1016/S0375-9601(96)00770-0
CrossRef Google Scholar
|
[30]
|
J. Zhang, B. Guo, and S. Shen, Homoclinic orbits of the Davey-Stewartson equations, Appl. Math. Mech, 2005, 26(2), 139-141. doi: 10.1007/BF02438234
CrossRef Google Scholar
|