2020 Volume 10 Issue 6
Article Contents

Yanlin Ding, Xinzhi Ren, Cuicui Jiang, Qianhong Zhang. PERIODIC SOLUTION OF A STOCHASTIC SIQR EPIDEMIC MODEL INCORPORATING MEDIA COVERAGE[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2439-2458. doi: 10.11948/20190333
Citation: Yanlin Ding, Xinzhi Ren, Cuicui Jiang, Qianhong Zhang. PERIODIC SOLUTION OF A STOCHASTIC SIQR EPIDEMIC MODEL INCORPORATING MEDIA COVERAGE[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2439-2458. doi: 10.11948/20190333

PERIODIC SOLUTION OF A STOCHASTIC SIQR EPIDEMIC MODEL INCORPORATING MEDIA COVERAGE

  • Corresponding author: Email address: zqianhong68@163.com(Q. Zhang)
  • Fund Project: The authors were supported by the Fundamental Research Funds for the Central Universities (XDJK2019C106), Youth Foundation of Army Medical University (2017XQN05), the Project funded by China Postdoctoral Science Foundation (2019M653816XB), the Sponsored by Natural Science Foundation of Chongqing, China(cstc2019jcyj-bshX0122) and the National Natural Science Foundation of China (11761018, 11901477, 11901576)
  • In this paper, we propose a stochastic SIQR epidemic model with periodic parameters and media coverage. Firstly, we study that the stochastic non-autonomous periodic system has a unique global positive solution. Secondly, by using the Khasminskii's theory, we prove that this stochastic periodic system has a nontrivial positive periodic solution. Then, we obtain the sufficient condition for extinction of the disease. Finally, numerical simulations are employed to illustrate our theoretical analysis.
    MSC: 92D30, 34D05
  • 加载中
  • [1] P. M. Arguin, A. W. Navin, S. F. Steele, L. H. Weld and P. E. Kozarsky, Health communication during SARS, Emerg. Infect. Dis., 2004, 10, 377-380. doi: 10.3201/eid1002.030812

    CrossRef Google Scholar

    [2] R. Anderson and R. May, Population biology of infectious diseases: part 1., Nature, 1979, 280, 361-367. doi: 10.1038/280361a0

    CrossRef Google Scholar

    [3] F. Chen, A susceptible-infected epidemic model with voluntary vaccinations, J. Math. Biol., 2006, 53, 253-272. doi: 10.1007/s00285-006-0006-1

    CrossRef Google Scholar

    [4] J. Cui, X. Tao and H. Zhu, An SIS infection model incorporating media coverage, Rocky Mountain J. Math., 2008, 38, 1323-1334. doi: 10.1216/RMJ-2008-38-5-1323

    CrossRef Google Scholar

    [5] Y. Cai, Y. Kang, M. Banerjee and W. Wang, A stochastic epidemic model incorporating media coverage, Commun. Math. Sci., 2016, 14(4), 893-910. doi: 10.4310/CMS.2016.v14.n4.a1

    CrossRef Google Scholar

    [6] M. De la Sen, S. Alonso Quesada and A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 2015, 270, 953-976.

    Google Scholar

    [7] D. Gao and S. Ruan, An SIS path model with variable transmission coefficients, Math. Biosci., 2011, 232, 110-115. doi: 10.1016/j.mbs.2011.05.001

    CrossRef Google Scholar

    [8] H. W. Hethcote, The mathemastics of infectious diseases, 2000, 42, 599-653.

    Google Scholar

    [9] R. Khasminskii, Stochastic Stability of Differential Equations, Springer, Berlin, 2011.

    Google Scholar

    [10] T. Kuniya, Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficiente, Appl. Math. Lett., 2014, 27, 15-20. doi: 10.1016/j.aml.2013.08.008

    CrossRef Google Scholar

    [11] J. Li and Z. Ma, Qualitative analysis of SIS epidemic model with vaccination and varying total population size, Math. Comput. Model., 2002, 35, 1235-1243. doi: 10.1016/S0895-7177(02)00082-1

    CrossRef Google Scholar

    [12] J. Li and Z. Ma, Stability analysis for SIS epidemic models with vaccination and constant population size, Discrete Contin. Dyn. Syst. Ser. B, 2004, 4, 635-642.

    Google Scholar

    [13] M. Liu, X. He and J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays, Nonlinear Anal. Hybrid Syst., 2018, 28, 87-104. doi: 10.1016/j.nahs.2017.10.004

    CrossRef Google Scholar

    [14] Q. Liu and D. Jiang, The threshold of a stochastic delayed SIR epidemic model with vaccination, Phys. A, 2016, 461, 140-147. doi: 10.1016/j.physa.2016.05.036

    CrossRef Google Scholar

    [15] Q. Liu, D. Jiang, H. Tasawar and A. Ahmed, Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates, Journal of the Franklin Institute, 2019, 365, 2960-2993.

    Google Scholar

    [16] R. Lipster, A strong law of large numbers for local martingales, Stochastics, 1980, 3, 217-228. doi: 10.1080/17442508008833146

    CrossRef Google Scholar

    [17] W. Liu and X. Zhang, A stochastic SIS epidemic model incorporating media coverage in a two patch setting, Appl. Math. Comput., 2015, 262, 160-168.

    Google Scholar

    [18] X. Lv, L. Wang and X. Meng, Global analysis of a new nonlinear stochastic differential competition system with impulsive effect, Adv. Differential Equations 2017, 2017, 296.

    Google Scholar

    [19] Y. Lin, D. Jiang and T. Liu, Nontrivial periodic solution of a stochastic epidemic model with seasonal variation, Appl. Math. Lett., 2015, 45, 103-107. doi: 10.1016/j.aml.2015.01.021

    CrossRef Google Scholar

    [20] Z. Ma, Y. Zhou and J. Wu, Modeling and Dynamics of Infectious Diseases, Higher Education Press, Beijing, 2009, In Chinese.

    Google Scholar

    [21] A. Misra, A. Sharma and J. Shukla, Modeling and analysis of effects of awraencess programs by media on the spread of infectious diaeases, Math. Comput. Model., 2011, 53, 1221-1228. doi: 10.1016/j.mcm.2010.12.005

    CrossRef Google Scholar

    [22] M. Ma, S. Liu and J. Li, Does media coverage influence the spread of drug addiction? Commun. Nonlinear Sci., 2017, 50, 169-179. doi: 10.1016/j.cnsns.2017.03.002

    CrossRef Google Scholar

    [23] X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 2011, 60, 398-405. doi: 10.1016/j.sysconle.2011.02.013

    CrossRef Google Scholar

    [24] X. Mao, G. Marion and E. Renshaw, Environmental brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 2002, 97, 95-110. doi: 10.1016/S0304-4149(01)00126-0

    CrossRef Google Scholar

    [25] X. Meng, S. Zhao, T. Feng and T. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 2016, 433, 227-242. doi: 10.1016/j.jmaa.2015.07.056

    CrossRef Google Scholar

    [26] X. Meng, L. Wang and T. Zhang, Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment, J. Appl. Anal. Comput., 2016, 6(3), 865-875.

    Google Scholar

    [27] X. Meng, L. Chen and B. Wu, A delay SIR epidemic model with pulse vaccination and incubation times, Nonlinear Anal. RWA, 2010, 11, 88-98. doi: 10.1016/j.nonrwa.2008.10.041

    CrossRef Google Scholar

    [28] R. Nistal, M. De la Sen and S. Alonso Quesada, On the stability and equilibrium points of multistaged SI(n)r epidemic models, Discrete Dyn. Nat. Soc., 2015, 2015, 15. Article ID: 379576.

    Google Scholar

    [29] C. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 2011, 230, 221-232.

    Google Scholar

    [30] E. Shim, Z. Feng, M. Martcheva and C. C. Chavez, An age-structured epidemic model of rotavirus with vaccination, J. Math. Biol., 2006, 53, 719-746. doi: 10.1007/s00285-006-0023-0

    CrossRef Google Scholar

    [31] H. C. Tuckwell and R. J. Williams, Some properties of a simple stochastic epidemic model of SIR type, Math. Biosci., 2007, 208, 76-97. doi: 10.1016/j.mbs.2006.09.018

    CrossRef Google Scholar

    [32] J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith and C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health 11, Article S5 2011.

    Google Scholar

    [33] C. Xu, Global threshold dynamics of a stochastic differential equation SIS model, J. Math. Anal. Appl., 2017, 447(2), 736-757.

    Google Scholar

    [34] Y. Xiao, T. Zhao and S. Tang, Dynamics of an infectious diaeases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 2013, 10, 445. doi: 10.3934/mbe.2013.10.445

    CrossRef Google Scholar

    [35] X. Yu, Y. Sun and T. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Commun. Nonlinear Sci. Numer. Simul., 2018, 59, 359-374. doi: 10.1016/j.cnsns.2017.11.028

    CrossRef Google Scholar

    [36] F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 2007, 325(1), 496-516. doi: 10.1016/j.jmaa.2006.01.085

    CrossRef Google Scholar

    [37] J. Zhang, Z. Jin, G. Q. Sun, T. Zhou and S. Ruan, Analysis of rabies in china: transmission dynamics and control, PloS One 2011, 6: e20891.

    Google Scholar

    [38] T. Zhang, T. Zhang and X. Meng, Stability analysis of a chemostat model with maintenance energy, Appl. Math. Lett., 2017, 68, 1-7. doi: 10.1016/j.aml.2016.12.007

    CrossRef Google Scholar

    [39] Y. Zhang, K. Fan, S. Gao, Y. Liu and S. Chen, Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate, Phys A, 2019, 514, 671-685. doi: 10.1016/j.physa.2018.09.124

    CrossRef Google Scholar

    [40] Y. Zhao and D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 2014, 243, 718-727.

    Google Scholar

Figures(2)

Article Metrics

Article views(3331) PDF downloads(567) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint