[1]
|
F. V. Atkinson, Discrete and continuous boundary problems, Academic Press, 1964.
Google Scholar
|
[2]
|
C. Bennewitz and W. N. Everitt, On second-order left-definite boundary value problems, in Ordinary differential equations and operators, Springer, 1983, 31-67.
Google Scholar
|
[3]
|
E. A. Coddington and N. Levinson, Theory of ordinary differential equations, Tata McGraw-Hill Education, 1955.
Google Scholar
|
[4]
|
J. Dieudonné, Foundations of modern analysis, Read Books Ltd, 2011.
Google Scholar
|
[5]
|
J. Eckhardt, F. Gesztesy, R. Nichols and G. Teschl, Weyl-titchmarsh theory for sturm-liouville operators with distributional potentials, arXiv preprint arXiv: 1208.4677, 2012.
Google Scholar
|
[6]
|
S. Ge, W. Wang and J. Suo, Dependence of eigenvalues of a class of fourth-order sturm-liouville problems on the boundary, Applied Mathematics and Computation, 2013, 220, 268-276. doi: 10.1016/j.amc.2013.06.029
CrossRef Google Scholar
|
[7]
|
E. Hille, Lectures on ordinary differential equations, 1969.
Google Scholar
|
[8]
|
K. Jorgens, Spectral Theory of Second-order Ordinary Differential Operators: Lectures Delivered at Aarhus Universitet 1962/63, Aarhus Universitet, Matematisk Institut, 1964.
Google Scholar
|
[9]
|
Q. Kong, H. Wu and A. Zettl, Dependence of the nth sturm-liouville eigenvalue on the problem, Journal of differential equations, 1999, 156(2), 328-354. doi: 10.1006/jdeq.1998.3613
CrossRef Google Scholar
|
[10]
|
Q. Kong and A. Zettl, Dependence of eigenvalues of sturm-liouville problems on the boundary, journal of differential equations, 1996, 126(2), 389-407. doi: 10.1006/jdeq.1996.0056
CrossRef Google Scholar
|
[11]
|
K. Li, J. Sun and X. Hao, Dependence of eigenvalues of 2 n th order boundary value transmission problems, Boundary Value Problems, 2017, 2017(1), 1-14.
Google Scholar
|
[12]
|
K. Li, J. Sun and X. Hao, Eigenvalues of regular fourth-order sturm-liouville problems with transmission conditions, Mathematical Methods in the Applied Sciences, 2017, 40(10), 3538-3551. doi: 10.1002/mma.4243
CrossRef Google Scholar
|
[13]
|
A. M. Savchuk and A. A. Shkalikov, Sturm-liouville operators with singular potentials, Mathematical Notes, 1999, 66(6), 741-753. doi: 10.1007/BF02674332
CrossRef Google Scholar
|
[14]
|
E. Uğurlu, Regular third-order boundary value problems, Applied Mathematics and Computation, 2019, 343, 247-257. doi: 10.1016/j.amc.2018.09.046
CrossRef Google Scholar
|
[15]
|
E. Uğurlu, Regular fifth-order boundary value problems, Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 2105-2121. doi: 10.1007/s40840-019-00794-w
CrossRef Google Scholar
|
[16]
|
E. Uğurlu and E. Bairamov, The spectral analysis of a nuclear resolvent operator associated with a second order dissipative differential operator, Computational Methods and Function Theory, 2017, 17(2), 237-253. doi: 10.1007/s40315-016-0185-8
CrossRef Google Scholar
|
[17]
|
Q. Yang, W. Wang and X. Gao, Dependence of eigenvalues of a class of higher-order sturm-liouville problems on the boundary, Mathematical Problems in Engineering, 2015, 2015.
Google Scholar
|
[18]
|
A. Zettl, Sturm-liouville theory, mathematical surveys and monographs, American Mathematical Society, Providence, 2005, 121.
Google Scholar
|
[19]
|
M. Zhang and Y. Wang, Dependence of eigenvalues of sturm-liouville problems with interface conditions, Applied Mathematics and Computation, 2015, 265, 31-39. doi: 10.1016/j.amc.2015.05.002
CrossRef Google Scholar
|