2020 Volume 10 Issue 5
Article Contents

Tiancai Liao, Hengguo Yu, Chuanjun Dai, Min Zhao. IMPACT OF NOISE IN A PHYTOPLANKTON-ZOOPLANKTON SYSTEM[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1878-1896. doi: 10.11948/20190272
Citation: Tiancai Liao, Hengguo Yu, Chuanjun Dai, Min Zhao. IMPACT OF NOISE IN A PHYTOPLANKTON-ZOOPLANKTON SYSTEM[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1878-1896. doi: 10.11948/20190272

IMPACT OF NOISE IN A PHYTOPLANKTON-ZOOPLANKTON SYSTEM

  • Corresponding author: Email address:zmcnzj@sina.com(M. Zhao)
  • Fund Project: The authors were supported by the National Key Research and Development Program of China (Grant No. 2018YFE0103700), the National Natural Science Foundation of China (Grant nos. 61871293 and 31570364) and the Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ18C030002)
  • In this paper, we investigate the dynamics of a delayed toxic phytoplankton-two zooplankton system incorporating the effects of L$ \acute{e} $vy noise and white noise. The value of this study lies in two aspects: Mathematically, we first prove the existence of a unique global positive solution of the system, and then we investigate the sufficient conditions that guarantee the stochastic extinction and persistence in the mean of each population. Ecologically, via numerical simulations, we find that the effect of white noise or L$ \acute{e} $vy noise on the stochastic extinction and persistence of phytoplankton and zooplankton are similar, but the synergistic effects of the two noises on the stochastic extinction and persistence of these plankton are stronger than that of single noise. In addition, an increase in the toxin liberation rate or the intraspecific competition rate of zooplankton was found to be capable to increase the biomass of the phytoplankton but decrease the biomass of zooplankton. These results may help us to better understand the phytoplankton-zooplankton dynamics in the fluctuating environments.
    MSC: 60H10, 37A99, 65P30
  • 加载中
  • [1] L. Bai, J. Li, K. Zhang and W. Zhao, Analysis of ratio-dependent predator-prey model driven by l$\acute{e}$vy noise, Appl. Math. Comput., 2014, 233, 480-493.

    $\acute{e}$vy noise" target="_blank">Google Scholar

    [2] M. Bandyopadhyay, T. Saha and R. Pal, Determinstic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment, Nolinear Anal-Hybri., 2008, 2, 958-970. doi: 10.1016/j.nahs.2008.04.001

    CrossRef Google Scholar

    [3] J. Bao, X. Mao, G. Yin and C. Yuan, Competitive lotka-volterra population dynamics with jumps, Nonlinear Anal., 2011, 74, 6601-6616. doi: 10.1016/j.na.2011.06.043

    CrossRef Google Scholar

    [4] Y. Cai, J. Jiao, Z. Gui et al., Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 2018, 329, 210-226.

    Google Scholar

    [5] Y. Cai, Y. Kang and W. Wang, A stochastic sirs epidemic model with nonlinear incidence rate, Appl. Math. Comput., 2017, 305, 221-240.

    Google Scholar

    [6] Y. Cai, Y.Kang, M. Banerjee and W. Wang, A stochastic sirs epidemic model with infectious force under intervention strategies, J. Diff. Equ., 2015, 259, 7463-7502. doi: 10.1016/j.jde.2015.08.024

    CrossRef Google Scholar

    [7] Y. Cai, Z. Gui, X. Zhang et al., Bifurcations and pattern formation in a predator-prey model, Int. J. Bifurcat. Chaos, 2018, 28, 1850140. doi: 10.1142/S0218127418501407

    CrossRef Google Scholar

    [8] R. Chaudhuri, S. Roy and J. Chattopadhayay, Phytoplankton-zooplankton dynamics in the 'presence' or 'absence' of toxic phytoplankton, App. Math. Comput., 2013, 225, 102-116. doi: 10.1016/j.amc.2013.08.082

    CrossRef Google Scholar

    [9] C. Chen and Y. Kang, Dynamics of a stochastic multi-strain sis epidemic model driven by l$\acute{e}$vy noise, Commun. Nonlinear Sci. Numer. Simulat., 2017, 42, 379-395. doi: 10.1016/j.cnsns.2016.06.012

    CrossRef $\acute{e}$vy noise" target="_blank">Google Scholar

    [10] P. Classerman, Monte Carlo Methods in Financial Engineering, Springer-Verlag, Columbia University.

    Google Scholar

    [11] D. Conley, E. Bonsdorff, J. Carstensen et al., Tackling hypoxia in the baltic sea: Is engineering a solution?, Environ. Sci. Technol., 2009, 43, 3407-3411. doi: 10.1021/es8027633

    CrossRef Google Scholar

    [12] C. Dai, H. Yu and M. Zhao, Dynamics induced by delay in a nutrient-phytoplankton model with diffusion, Ecol. Complex., 2016, 26, 29-36. doi: 10.1016/j.ecocom.2016.03.001

    CrossRef Google Scholar

    [13] C. Dai, M. Zhao, H. Yu and Y. Wang, Delay-induced instability in a nutrient-phytoplankton system with flow, Phys. Rev. E, 2015, 91(3), 1-6.

    Google Scholar

    [14] S. Ding, M. Chen, M. Gong et al., Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms, Sci. Total. Environ., 2018, 625, 872-884. doi: 10.1016/j.scitotenv.2017.12.348

    CrossRef Google Scholar

    [15] W. K. Dodds, W. W. Bouska, J. L. Eitzmann et al., Eutrophication of u.s. freshwaters: analysis of potential economic damages, Environ. Sci. Technol., 2009, 43, 12-18. doi: 10.1021/es801217q

    CrossRef Google Scholar

    [16] S. Gard, Persistence in stochastic food web models, Bull. Math. Biol., 1984, 46, 357-370. doi: 10.1016/S0092-8240(84)80044-0

    CrossRef Google Scholar

    [17] J. Geng, M. Liu and Y. Zhang, Stability of a stochastic one predator-two prey population model with time delays, Commun. Nonliear Sci. Numer. Simulat., 65-82, 53, 2017.

    Google Scholar

    [18] C. J. Gobler, O. M. Doherty, T. K. Hattenrath-Lehmann et al., Ocean warming since 1982 has expanded the niche of toxic algal blooms in the north atlantic and north pacific oceans, Pro. Natl. Acad. Sci. U. S. A., 4975-4980, 114, 2017.

    Google Scholar

    [19] K. Havens, T. Fukushima, P. Xie et al., Nutrient dynamics and the eutrophication of shallow lakes kasumigaura (japan), donghu (pr china), and okeechobee (usa), Environ. Pollut., 2001, 111, 263-272. doi: 10.1016/S0269-7491(00)00074-9

    CrossRef Google Scholar

    [20] S. Jang and E. Allen, Deterministic and stochastic nutrinet-phytoplankton-zooplankton models with periodic producing phytoplankton, Appl. Math. Comput., 2015, 271, 52-67.

    Google Scholar

    [21] T. Jang, J. Baglama and L. Wu, Dynamics of phytoplankton-zooplankton systems with toxin producing phytoplankton, Appl. Math. Comput., 2014, 227, 717-740.

    Google Scholar

    [22] J. Li, Y. Song, H. Wan and H. Zhu, Dynamics nanlysis a toxin-producing phytoplankton-zooplankton model with refuge, Math. Biosci. Eng., 2017, 14, 529-557.

    Google Scholar

    [23] R. Lipster, A strong law of large numbers for local martingales, Stochastic, 1980, 3, 217-228. doi: 10.1080/17442508008833146

    CrossRef Google Scholar

    [24] C. Liu, L. Wan, Q. Zhang and Y. Yan, Dynamical analysis in a bioeconamic phytoplankton-zooplankton system with double time delays and environmental stochasticity, Physical A, 2017, 482, 682-698. doi: 10.1016/j.physa.2017.04.104

    CrossRef Google Scholar

    [25] M. Liu and C. Bai, Dynamics of a stochastic one-prey two-predator model with l$\acute{e}$vy jump, Appl. Math. Comput., 2016, 284, 308-321.

    $\acute{e}$vy jump" target="_blank">Google Scholar

    [26] M. Liu, C. Bai, M. Deng and B. Du, Analysis of stochastic two-prey one-predator model with l$\acute{e}$vy jumps, Physica A, 2016, 445, 176-188. doi: 10.1016/j.physa.2015.10.066

    CrossRef $\acute{e}$vy jumps" target="_blank">Google Scholar

    [27] M. Liu and K. Wang, Stochastic lotka-volterra systems with l$\acute{e}$vy noise, J. Math. Anal. Appl., 2014, 410, 750-763. doi: 10.1016/j.jmaa.2013.07.078

    CrossRef $\acute{e}$vy noise" target="_blank">Google Scholar

    [28] Q. Liu, Q. Chen and Z. Liu, Analysis on stochastic delay lotka-volterra systems driven by l$\acute{e}$vy noise, Appl. Math. Comput., 2014, 235, 261-271.

    $\acute{e}$vy noise" target="_blank">Google Scholar

    [29] Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Dynamical behavior of a stochastic epidemic model for cholera, J. Franklin Inst., 2019, 356, 7486-7514. doi: 10.1016/j.jfranklin.2018.11.056

    CrossRef Google Scholar

    [30] Q. Liu, D. Jiang, T. Hayat and B. Ahmad, Stationary distribution and extinction of a stochastic predator-prey model with additional food and nonlinear perturbation, Appl. Math. Comput., 2018, 320, 226-239.

    Google Scholar

    [31] Q. Liu, D. Jiang, N. Shi et al., Dynamics of a stochastic delayed sir epidemic model with vaccination and double diseases driven by l$\acute{e}$vy jumps, Physica A, 2018, 492, 2010-2018. doi: 10.1016/j.physa.2017.11.116

    CrossRef $\acute{e}$vy jumps" target="_blank">Google Scholar

    [32] J. Lv and K. Wang, Asymptotic properties of a stochastic predator-prey system with holling ii functional response, Commun. Nonlinear Sci. Numer. Simulat., 2011, 16, 4037-4048. doi: 10.1016/j.cnsns.2011.01.015

    CrossRef Google Scholar

    [33] Y. Lv, J. Cao, J. Song et al., Global stability and hopf-bifurcation in a zooplankton-phytoplankton model, Nonlinear Dyn., 2014, 76, 345-366. doi: 10.1007/s11071-013-1130-2

    CrossRef Google Scholar

    [34] Z. Ma, M. Wu, L. Lin et al., Allelopathic interactions between the macroalga hizikia fusiformis (harvey) and the harmful blooms-forming dinoflagellate karenia mikimotoi, Harmful Algae, 2017, 65, 19-26. doi: 10.1016/j.hal.2017.04.003

    CrossRef Google Scholar

    [35] Q. Mandal, L. Allen and M. Banerjeer, Stochastic modellig of phytoplankton allelopathy, Appl. Math. Model., 2014, 138, 1583-1596.

    Google Scholar

    [36] X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichaster, 1997.

    Google Scholar

    [37] X. Mao, G. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stoch. Process Appl., 2002, 97, 95-110. doi: 10.1016/S0304-4149(01)00126-0

    CrossRef Google Scholar

    [38] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006.

    Google Scholar

    [39] R. May, Stability and Complexity in Model Ecosystem, Princeton University Press, Princeton, 2001.

    Google Scholar

    [40] H. Paerl and J. Huisman, Blooms like it hot, Science, 2008, 320, 57-58. doi: 10.1126/science.1155398

    CrossRef Google Scholar

    [41] B. Qin, G. Zhu, G. Gao et al., A drinking water crisis in lake taihu, china: Linkage to climatic variability and lake management, Environ. Manage., 2010, 45, 105-112. doi: 10.1007/s00267-009-9393-6

    CrossRef Google Scholar

    [42] T. Saha and M. Bandyopadhyay, Dynamics analysis of toxin producing phytoplankton-zooplankton interactions, Nonlinear Anal. Real World Appl., 2009, 10, 314-332. doi: 10.1016/j.nonrwa.2007.09.001

    CrossRef Google Scholar

    [43] R. Shi and J. Yu, Hopf bifurcation analysis of two zooplankton-phytoplankton model with two delays, Chaos, Solitons and Fractals, 2017, 100, 62-73. doi: 10.1016/j.chaos.2017.04.044

    CrossRef Google Scholar

    [44] D. Valenti, G. Denaro, B. Spagnolo et al., Stochastic models for phytoplankton dynamics in mediterranean sea, Ecol.Comlex., 2016, 27, 84-103. doi: 10.1016/j.ecocom.2015.06.001

    CrossRef Google Scholar

    [45] J. Wang, Y. Cai, S. Fu and W. Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos, 2019, 29, 083109. doi: 10.1063/1.5111121

    CrossRef Google Scholar

    [46] W. Wang, Y. Cai, Z. Ding and Z. Gui, A stochastic differential equation sis epidemic model incorporating ornstein-uhlenbeck process, Physica A, 2018, 509, 921-936. doi: 10.1016/j.physa.2018.06.099

    CrossRef Google Scholar

    [47] W. Wang, X. Gao, Y. Cai et al., Turing patterns in a diffusive epidemic model with saturated infection force, J. Franklin I., 2018, 355, 7226-7245. doi: 10.1016/j.jfranklin.2018.07.014

    CrossRef Google Scholar

    [48] Y. Wang, H. Wang and W. Jiang, Hopf-transcritical bifurcation in toixc producing phytoplankton-zooplankton model with delay, J. Math. Anal. Appl., 2014, 415, 574-594. doi: 10.1016/j.jmaa.2014.01.081

    CrossRef Google Scholar

    [49] R. Wu, X. Zhou and K. Wang, Dynamical behaviors of a competitive system under the influence of random disturbance and toxic substances, , Nonlinear Dyn., 2014, 77(4), 1209-1222. doi: 10.1007/s11071-014-1371-8

    CrossRef Google Scholar

    [50] B. Yang, Y. Cai, K. Wang and W. Wang, Global threshold dynamics of a stochastic epidemic model incorporating media coverage, Adv. Differ. Equ., 2018, 2018, 462. doi: 10.1186/s13662-018-1925-z

    CrossRef Google Scholar

    [51] B. Yang, Y. Cai, K. Wang and W. Wang, Optimal harvesting policy of logistic population model in a randomly fluctuating environment, Physica A, 2019, 526, 120817. doi: 10.1016/j.physa.2019.04.053

    CrossRef Google Scholar

    [52] H. Yu, M. Zhao, Q. Wang and R. Agarwal, A focus on long-run sustainability of an impulsive switched eutrophication controlling system based upon the zeya reservoir, J. Franklin I., 2014, 351, 487-499. doi: 10.1016/j.jfranklin.2013.08.025

    CrossRef Google Scholar

    [53] X. Yu, S. Yuan and T. Zhang, The effects of toxin-producing phytoplankton and environmental fluctuations on the planktonic booms, Nonlinear Dyn., 2018, 91, 1653-1668. doi: 10.1007/s11071-017-3971-6

    CrossRef Google Scholar

    [54] H. Zhang, Y. Cai, S. Fu and W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 2019, 356, 328-337.

    Google Scholar

    [55] X. Zhang and K. Wang, Stability analysis of a stochastic gilpin-ayala model driven by l$\acute{e}$vy noise, Commun. Nonlinear Sci. Numer. Simulat., 2014, 19, 1391-1399. doi: 10.1016/j.cnsns.2013.09.013

    CrossRef $\acute{e}$vy noise" target="_blank">Google Scholar

    [56] Y. Zhao and S. Yuan, Stability in distribution of a hybrid system competitive lotka-volterra model with l$\acute{e}$vy jumps, Chaos Soltions Fractals, 2016, 85, 98-109. doi: 10.1016/j.chaos.2016.01.015

    CrossRef $\acute{e}$vy jumps" target="_blank">Google Scholar

    [57] Z. Zhao and Q. Jiang, The threshold of a stochastic sis epidemic model with vaccination, Appl. Math. Comput., 2014, 243, 718-727.

    Google Scholar

Figures(6)

Article Metrics

Article views(3545) PDF downloads(644) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint