[1]
|
R. Agarwal, M. Bohner and P. Wong, Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput., 1999, 99, 153-166.
Google Scholar
|
[2]
|
J. Ao, On two classes of third order boundary value problems with finite spectrum, Bull. Iranian Math. Soc., 2017, 43, 1089-1099.
Google Scholar
|
[3]
|
J. Ao, F. Bo and J. Sun, Fourth order boundary value problems with finite spectrum, Appl. Math. Comput., 2014, 244, 952-958.
Google Scholar
|
[4]
|
J. Ao, J. Sun and A. Zettl, Equivalence of fourth order boundary value problems and matrix eigenvalue problems, Result. Math., 2013, 63, 581-595. doi: 10.1007/s00025-011-0219-5
CrossRef Google Scholar
|
[5]
|
J. Ao, J. Sun and A. Zettl, Finite spectrum of 2nth order boundary value problems, Appl. Math. Lett., 2015, 42, 1-8. doi: 10.1016/j.aml.2014.10.003
CrossRef Google Scholar
|
[6]
|
J. Ao and J. Wang, Eigenvalues of Sturm-Liouville problems with distribution potentials on time scales, Quaest. Math., 2019, 42(9), 1185-1197. doi: 10.2989/16073606.2018.1509394
CrossRef Google Scholar
|
[7]
|
F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York/London, 1964.
Google Scholar
|
[8]
|
M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkh$\ddot{a}$user, Boston, 2001.
Google Scholar
|
[9]
|
W. N. Everitt and A. Poulkou, Kramer analytic kernels and first-order boundary value problems, J. Comput. Appl. Math., 2002, 148, 29-47. doi: 10.1016/S0377-0427(02)00571-X
CrossRef Google Scholar
|
[10]
|
M. Gregu$\breve{s}$, Third Order Linear Differential Equations, Reidel, Dordrecht, 1987.
Google Scholar
|
[11]
|
Q. Kong, Sturm-Liouville eigenvalue problems on time scales with separated boundary conditions, Result. Math., 2008, 52, 111-121. doi: 10.1007/s00025-007-0277-x
CrossRef Google Scholar
|
[12]
|
Q. Kong, H. Wu and A. Zettl, Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 2001, 263, 748-762. doi: 10.1006/jmaa.2001.7661
CrossRef Google Scholar
|
[13]
|
Y. Sun and Y. Zhao, Oscillation and asymptotic behavior of third-order nonlinear neutral delay differential equations with distributed deviating arguments, J. Appl. Anal. Comput., 2018, 8(6), 1796-1810.
Google Scholar
|
[14]
|
H. Tuna, Completeness theorem for the dissipative Sturm-Liouville operator on bounded time scales, Indian J. Pure Appl. Math., 2016, 47, 535-544. doi: 10.1007/s13226-016-0196-1
CrossRef Google Scholar
|
[15]
|
E. U$\breve{g}$urlu, Singular multiparameter dynamic equations with distributional potentials on time scales, Quaest. Math., 2017, 40, 1023-1040. doi: 10.2989/16073606.2017.1345802
CrossRef Google Scholar
|
[16]
|
E. U$\breve{g}$urlu, Regular third-order boundary value problems, Appl. Math. Comput., 2019, 343, 247-257.
Google Scholar
|
[17]
|
E. U$\breve{g}$urlu, Third-order boundary value transmission problems, Turkish J. Math., 2019, 43, 1518-1532. doi: 10.3906/mat-1812-36
CrossRef Google Scholar
|
[18]
|
E. U$\breve{g}$urlu, Extensions of a minimal third-order formally symmetric operator, Bull. Malays. Math. Sci. Soc., 2020, 43, 453-470. doi: 10.1007/s40840-018-0696-8
CrossRef Google Scholar
|
[19]
|
E. U$\breve{g}$urlu, Some singular third-order boundary value problems, Math. Method. Appl. Sci., 2020, 43, 2202-2215. doi: 10.1002/mma.6034
CrossRef Google Scholar
|
[20]
|
E. U$\breve{g}$urlu, D. Baleanu, Coordinate-free approach for the model operator associated with a third-order dissipative operator, Front. Phys., 2019, 7, 99. doi: 10.3389/fphy.2019.00099
CrossRef Google Scholar
|
[21]
|
Y. Wu and Z. Zhao, Positive solutions for third-order boundary value problems with change of signs, Appl. Math. Comput., 2011, 218, 2744-2749.
Google Scholar
|
[22]
|
A. Zettl, Sturm-Liouville Theory, Math. Surveys and Monogr. 121, Amer. Math. Soc. Providence, RI, 2005.
Google Scholar
|