2020 Volume 10 Issue 5
Article Contents

Jijun Ao, Nana Liu. THIRD ORDER BOUNDARY VALUE PROBLEM WITH FINITE SPECTRUM ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1869-1877. doi: 10.11948/20190233
Citation: Jijun Ao, Nana Liu. THIRD ORDER BOUNDARY VALUE PROBLEM WITH FINITE SPECTRUM ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1869-1877. doi: 10.11948/20190233

THIRD ORDER BOUNDARY VALUE PROBLEM WITH FINITE SPECTRUM ON TIME SCALES

  • Corresponding author: Email address:george_ao78@sohu.com(J. Ao) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11661059 and 11301259) and Natural Science Foundation of Inner Mongolia (No. 2017JQ07)
  • The eigenvalues of a class of third order boundary value problem on time scales is investigated. It is shown that this kind of third order boundary value problem has finite number of eigenvalues, and the same results on time scales are previously known only for even order cases. It can be illustrated that the number of eigenvalues depend on the partition of the time scale and the order of the equation.
    MSC: 34B09, 34B05
  • 加载中
  • [1] R. Agarwal, M. Bohner and P. Wong, Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput., 1999, 99, 153-166.

    Google Scholar

    [2] J. Ao, On two classes of third order boundary value problems with finite spectrum, Bull. Iranian Math. Soc., 2017, 43, 1089-1099.

    Google Scholar

    [3] J. Ao, F. Bo and J. Sun, Fourth order boundary value problems with finite spectrum, Appl. Math. Comput., 2014, 244, 952-958.

    Google Scholar

    [4] J. Ao, J. Sun and A. Zettl, Equivalence of fourth order boundary value problems and matrix eigenvalue problems, Result. Math., 2013, 63, 581-595. doi: 10.1007/s00025-011-0219-5

    CrossRef Google Scholar

    [5] J. Ao, J. Sun and A. Zettl, Finite spectrum of 2nth order boundary value problems, Appl. Math. Lett., 2015, 42, 1-8. doi: 10.1016/j.aml.2014.10.003

    CrossRef Google Scholar

    [6] J. Ao and J. Wang, Eigenvalues of Sturm-Liouville problems with distribution potentials on time scales, Quaest. Math., 2019, 42(9), 1185-1197. doi: 10.2989/16073606.2018.1509394

    CrossRef Google Scholar

    [7] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York/London, 1964.

    Google Scholar

    [8] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkh$\ddot{a}$user, Boston, 2001.

    Google Scholar

    [9] W. N. Everitt and A. Poulkou, Kramer analytic kernels and first-order boundary value problems, J. Comput. Appl. Math., 2002, 148, 29-47. doi: 10.1016/S0377-0427(02)00571-X

    CrossRef Google Scholar

    [10] M. Gregu$\breve{s}$, Third Order Linear Differential Equations, Reidel, Dordrecht, 1987.

    Google Scholar

    [11] Q. Kong, Sturm-Liouville eigenvalue problems on time scales with separated boundary conditions, Result. Math., 2008, 52, 111-121. doi: 10.1007/s00025-007-0277-x

    CrossRef Google Scholar

    [12] Q. Kong, H. Wu and A. Zettl, Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 2001, 263, 748-762. doi: 10.1006/jmaa.2001.7661

    CrossRef Google Scholar

    [13] Y. Sun and Y. Zhao, Oscillation and asymptotic behavior of third-order nonlinear neutral delay differential equations with distributed deviating arguments, J. Appl. Anal. Comput., 2018, 8(6), 1796-1810.

    Google Scholar

    [14] H. Tuna, Completeness theorem for the dissipative Sturm-Liouville operator on bounded time scales, Indian J. Pure Appl. Math., 2016, 47, 535-544. doi: 10.1007/s13226-016-0196-1

    CrossRef Google Scholar

    [15] E. U$\breve{g}$urlu, Singular multiparameter dynamic equations with distributional potentials on time scales, Quaest. Math., 2017, 40, 1023-1040. doi: 10.2989/16073606.2017.1345802

    CrossRef Google Scholar

    [16] E. U$\breve{g}$urlu, Regular third-order boundary value problems, Appl. Math. Comput., 2019, 343, 247-257.

    Google Scholar

    [17] E. U$\breve{g}$urlu, Third-order boundary value transmission problems, Turkish J. Math., 2019, 43, 1518-1532. doi: 10.3906/mat-1812-36

    CrossRef Google Scholar

    [18] E. U$\breve{g}$urlu, Extensions of a minimal third-order formally symmetric operator, Bull. Malays. Math. Sci. Soc., 2020, 43, 453-470. doi: 10.1007/s40840-018-0696-8

    CrossRef Google Scholar

    [19] E. U$\breve{g}$urlu, Some singular third-order boundary value problems, Math. Method. Appl. Sci., 2020, 43, 2202-2215. doi: 10.1002/mma.6034

    CrossRef Google Scholar

    [20] E. U$\breve{g}$urlu, D. Baleanu, Coordinate-free approach for the model operator associated with a third-order dissipative operator, Front. Phys., 2019, 7, 99. doi: 10.3389/fphy.2019.00099

    CrossRef Google Scholar

    [21] Y. Wu and Z. Zhao, Positive solutions for third-order boundary value problems with change of signs, Appl. Math. Comput., 2011, 218, 2744-2749.

    Google Scholar

    [22] A. Zettl, Sturm-Liouville Theory, Math. Surveys and Monogr. 121, Amer. Math. Soc. Providence, RI, 2005.

    Google Scholar

Article Metrics

Article views(2108) PDF downloads(439) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint