[1]
|
V. I. Arnold, Ten problems, Adv. Soviet Math. 1990.
Google Scholar
|
[2]
|
L. Cveticanin, Strong Nonlinear Oscillators, Springer, Berlin, 2018.
Google Scholar
|
[3]
|
F. Chen, C. Li, J. Libre, and Z. Zhang, A unified proof on the weak Hilbert 16th problem for $n = 2$, J. Differ. Equat., 2006, 221, 309–342. doi: 10.1016/j.jde.2005.01.009
CrossRef Google Scholar
|
[4]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (I) Saddle loop and two saddle cycle, J. Differ. Equat., 2001, 176, 114–157. doi: 10.1006/jdeq.2000.3977
CrossRef Google Scholar
|
[5]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ) Cuspidal loop, J. Differ. Equat., 2001, 175, 209–243. doi: 10.1006/jdeq.2000.3978
CrossRef Google Scholar
|
[6]
|
F. Dumortier and C. Li, Perturbation from an elliptic Hamiltonian of degree four: Ⅲ Global center, J. Differ. Equat., 2003, 188, 473–511. doi: 10.1016/S0022-0396(02)00110-9
CrossRef Google Scholar
|
[7]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (IV) Figure eight-loop, J. Differ. Equat., 2003, 88, 512–514.
Google Scholar
|
[8]
|
M. Grau, F. Ma$\widetilde{n}$osas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 2011, 363, 109–129.
Google Scholar
|
[9]
|
M. Han and P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Sringer, 2012.
Google Scholar
|
[10]
|
M. Han, J. Yang, A. Tarta and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J.Dyn Diff Equat., 2008, 20, 923–944. doi: 10.1007/s10884-008-9108-3
CrossRef Google Scholar
|
[11]
|
M. Han, H. Zang and J. Yang, limit cycle bifurcations by perturbing a suspidal loop in a Hamiltonian system, J. Differ. Equat., 2009, 246, 129–163. doi: 10.1016/j.jde.2008.06.039
CrossRef Google Scholar
|
[12]
|
M. Han, J. Yang and D. Xiao, Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle, Int. J. Bifur. Chaos, 2012, 22, 1250189. doi: 10.1142/S0218127412501891
CrossRef Google Scholar
|
[13]
|
M. Han, Asymptotic Expansions of Melnikov Functions and Limit Cycle Bifurcations, Int. J. Bifur. Chaos, 2012, 22, 1250296. doi: 10.1142/S0218127412502963
CrossRef Google Scholar
|
[14]
|
M. Han, L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 2015, 5(4), 809–815.
Google Scholar
|
[15]
|
M. Han, Bifurcation theory of limit cycles, Science Press, Beijing, 2016.
Google Scholar
|
[16]
|
D. Hilbert, Mathematical problems, Bull. Amer. Math, Soc., 1902, 8, 437–479.
Google Scholar
|
[17]
|
R. Kazemi and H. RZ Zangeneh, Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles, J. Appl. Anal. Comput., 2012, 2, 395–413.
Google Scholar
|
[18]
|
C. Li and C. Rousseau, A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: the cusp of order 4, J. Differ. Equat., 1989, 79, 132–167. doi: 10.1016/0022-0396(89)90117-4
CrossRef Google Scholar
|
[19]
|
F. Ma$\widetilde{n}$osas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Differ. Equat., 2011, 251, 1656–1669. doi: 10.1016/j.jde.2011.05.026
CrossRef Google Scholar
|
[20]
|
P. Mardešić, Chebyshev systems and the versal unfolding of the cusps of order n, Hermann, Éditeurs des Sciences et des Arts, Paris, 1998.
Google Scholar
|
[21]
|
S. Smale, Mathematical problems for the next century, The mathematical intelligencer, 1998, 20, 7–15. doi: 10.1007/BF03025291
CrossRef Google Scholar
|
[22]
|
X. Sun and P. Yu, Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4, J. Differ. Equat., 2019, 267, 7369–7384. doi: 10.1016/j.jde.2019.07.023
CrossRef Google Scholar
|
[23]
|
X. Sun and J. Yang, Sharp bounds of the number of zeros of Abelian integrals with parameters, E. J. Differ. Equat., 2014, 40, 1–12.
Google Scholar
|
[24]
|
X. Sun, Perturbation of a period annulus bounded by a heteroclinic loop connecting two hyperbolic saddles, Qual. Theory Dyn. Syst., 2017, 16, 187–203. doi: 10.1007/s12346-015-0186-4
CrossRef Google Scholar
|
[25]
|
X. Sun, Bifurcation of limit cycles from a Liénard system with a heteroclinic loop connecting two nilpotent saddles, Nonlinear Dynam, 2013, 73, 869–880. doi: 10.1007/s11071-013-0838-3
CrossRef Google Scholar
|
[26]
|
X. Sun and L. Zhao, Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Appl. Math. Comput., 2016, 289, 194–203.
Google Scholar
|
[27]
|
X. Sun, M. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 2011, 74, 2948–2965. doi: 10.1016/j.na.2011.01.013
CrossRef Google Scholar
|
[28]
|
Y. Tian, M. Han, Hopf and homoclinic bifurcations for near-Hamiltonian systems, J. Differ. Equat., 2017, 262(4), 3214–3234. doi: 10.1016/j.jde.2016.11.026
CrossRef Google Scholar
|
[29]
|
H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Differ. Equat., 2017, 263(11), 7448–7474. doi: 10.1016/j.jde.2017.08.011
CrossRef Google Scholar
|
[30]
|
S. Yang, B. Qin, G. Xia and Y. Xia, Perturbation of a period annulus bounded by a saddle-saddle cycle in a hyperelliptic Hamiltonian systems of degree 7, Qual. Theory Dyn. Syst., 2019, accepted.
Google Scholar
|
[31]
|
L. Zhao and D. Li, Bifurcations of limit cycles from a quintic Hamiltonian system with a heteroclinic cycle, Acta Mathematica Sinica. English Series, 2014, 30(3), 411. doi: 10.1007/s10114-014-2615-8
CrossRef Google Scholar
|
[32]
|
H. Zhu, S. Yang, X. Hu and W. Huang, Perturbation of a Period Annulus with a Unique Two-Saddle Cycle in Higher Order Hamiltonian, Complexity, 5813596, 2019.
Google Scholar
|
[33]
|
H. Zang, M. Han and D. Xiao, On Melnikov functions of a homoclinic loop through a nilpotent saddle for planar near-Hamiltonian system, J. Differ. Equat., 2008, 245, 1086–1111. doi: 10.1016/j.jde.2008.04.018
CrossRef Google Scholar
|