2020 Volume 10 Issue 1
Article Contents

Xianbo Sun. EXACT BOUND ON THE NUMBER OF LIMIT CYCLES ARISING FROM A PERIODIC ANNULUS BOUNDED BY A SYMMETRIC HETEROCLINIC LOOP[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 378-390. doi: 10.11948/20190294
Citation: Xianbo Sun. EXACT BOUND ON THE NUMBER OF LIMIT CYCLES ARISING FROM A PERIODIC ANNULUS BOUNDED BY A SYMMETRIC HETEROCLINIC LOOP[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 378-390. doi: 10.11948/20190294

EXACT BOUND ON THE NUMBER OF LIMIT CYCLES ARISING FROM A PERIODIC ANNULUS BOUNDED BY A SYMMETRIC HETEROCLINIC LOOP

  • Corresponding author: Email address: xianbo01@126.com(X. Sun)
  • Fund Project: The author is supported by National Natural Science Foundation of China (11861009), National Science Foundation of Guangxi (2018GXNSFAA138198) and Program for Innovative Team of GUFE(2018-2021)
  • In this paper, the bound on the number of limit cycles by Poincaré bifurcation in a small perturbation of some seventh-degree Hamiltonian system is concerned. The lower and upper bounds on the number of limit cycles have been obtained in two previous works, however, the sharp bound is still unknown. We will employ some new techniques to determine which is the exact bound between $ 3 $ and $ 4 $. The asymptotic expansions are used to determine the four vertexes of a tetrahedron, and the sharp bound can be reached when the parameters belong to this tetrahedron.
    MSC: 34C07, 34D10, 37G20
  • 加载中
  • [1] V. I. Arnold, Ten problems, Adv. Soviet Math. 1990.

    Google Scholar

    [2] L. Cveticanin, Strong Nonlinear Oscillators, Springer, Berlin, 2018.

    Google Scholar

    [3] F. Chen, C. Li, J. Libre, and Z. Zhang, A unified proof on the weak Hilbert 16th problem for $n = 2$, J. Differ. Equat., 2006, 221, 309–342. doi: 10.1016/j.jde.2005.01.009

    CrossRef Google Scholar

    [4] F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (I) Saddle loop and two saddle cycle, J. Differ. Equat., 2001, 176, 114–157. doi: 10.1006/jdeq.2000.3977

    CrossRef Google Scholar

    [5] F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ) Cuspidal loop, J. Differ. Equat., 2001, 175, 209–243. doi: 10.1006/jdeq.2000.3978

    CrossRef Google Scholar

    [6] F. Dumortier and C. Li, Perturbation from an elliptic Hamiltonian of degree four: Ⅲ Global center, J. Differ. Equat., 2003, 188, 473–511. doi: 10.1016/S0022-0396(02)00110-9

    CrossRef Google Scholar

    [7] F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (IV) Figure eight-loop, J. Differ. Equat., 2003, 88, 512–514.

    Google Scholar

    [8] M. Grau, F. Ma$\widetilde{n}$osas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 2011, 363, 109–129.

    Google Scholar

    [9] M. Han and P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Sringer, 2012.

    Google Scholar

    [10] M. Han, J. Yang, A. Tarta and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J.Dyn Diff Equat., 2008, 20, 923–944. doi: 10.1007/s10884-008-9108-3

    CrossRef Google Scholar

    [11] M. Han, H. Zang and J. Yang, limit cycle bifurcations by perturbing a suspidal loop in a Hamiltonian system, J. Differ. Equat., 2009, 246, 129–163. doi: 10.1016/j.jde.2008.06.039

    CrossRef Google Scholar

    [12] M. Han, J. Yang and D. Xiao, Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle, Int. J. Bifur. Chaos, 2012, 22, 1250189. doi: 10.1142/S0218127412501891

    CrossRef Google Scholar

    [13] M. Han, Asymptotic Expansions of Melnikov Functions and Limit Cycle Bifurcations, Int. J. Bifur. Chaos, 2012, 22, 1250296. doi: 10.1142/S0218127412502963

    CrossRef Google Scholar

    [14] M. Han, L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 2015, 5(4), 809–815.

    Google Scholar

    [15] M. Han, Bifurcation theory of limit cycles, Science Press, Beijing, 2016.

    Google Scholar

    [16] D. Hilbert, Mathematical problems, Bull. Amer. Math, Soc., 1902, 8, 437–479.

    Google Scholar

    [17] R. Kazemi and H. RZ Zangeneh, Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles, J. Appl. Anal. Comput., 2012, 2, 395–413.

    Google Scholar

    [18] C. Li and C. Rousseau, A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: the cusp of order 4, J. Differ. Equat., 1989, 79, 132–167. doi: 10.1016/0022-0396(89)90117-4

    CrossRef Google Scholar

    [19] F. Ma$\widetilde{n}$osas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Differ. Equat., 2011, 251, 1656–1669. doi: 10.1016/j.jde.2011.05.026

    CrossRef Google Scholar

    [20] P. Mardešić, Chebyshev systems and the versal unfolding of the cusps of order n, Hermann, Éditeurs des Sciences et des Arts, Paris, 1998.

    Google Scholar

    [21] S. Smale, Mathematical problems for the next century, The mathematical intelligencer, 1998, 20, 7–15. doi: 10.1007/BF03025291

    CrossRef Google Scholar

    [22] X. Sun and P. Yu, Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4, J. Differ. Equat., 2019, 267, 7369–7384. doi: 10.1016/j.jde.2019.07.023

    CrossRef Google Scholar

    [23] X. Sun and J. Yang, Sharp bounds of the number of zeros of Abelian integrals with parameters, E. J. Differ. Equat., 2014, 40, 1–12.

    Google Scholar

    [24] X. Sun, Perturbation of a period annulus bounded by a heteroclinic loop connecting two hyperbolic saddles, Qual. Theory Dyn. Syst., 2017, 16, 187–203. doi: 10.1007/s12346-015-0186-4

    CrossRef Google Scholar

    [25] X. Sun, Bifurcation of limit cycles from a Liénard system with a heteroclinic loop connecting two nilpotent saddles, Nonlinear Dynam, 2013, 73, 869–880. doi: 10.1007/s11071-013-0838-3

    CrossRef Google Scholar

    [26] X. Sun and L. Zhao, Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Appl. Math. Comput., 2016, 289, 194–203.

    Google Scholar

    [27] X. Sun, M. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 2011, 74, 2948–2965. doi: 10.1016/j.na.2011.01.013

    CrossRef Google Scholar

    [28] Y. Tian, M. Han, Hopf and homoclinic bifurcations for near-Hamiltonian systems, J. Differ. Equat., 2017, 262(4), 3214–3234. doi: 10.1016/j.jde.2016.11.026

    CrossRef Google Scholar

    [29] H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Differ. Equat., 2017, 263(11), 7448–7474. doi: 10.1016/j.jde.2017.08.011

    CrossRef Google Scholar

    [30] S. Yang, B. Qin, G. Xia and Y. Xia, Perturbation of a period annulus bounded by a saddle-saddle cycle in a hyperelliptic Hamiltonian systems of degree 7, Qual. Theory Dyn. Syst., 2019, accepted.

    Google Scholar

    [31] L. Zhao and D. Li, Bifurcations of limit cycles from a quintic Hamiltonian system with a heteroclinic cycle, Acta Mathematica Sinica. English Series, 2014, 30(3), 411. doi: 10.1007/s10114-014-2615-8

    CrossRef Google Scholar

    [32] H. Zhu, S. Yang, X. Hu and W. Huang, Perturbation of a Period Annulus with a Unique Two-Saddle Cycle in Higher Order Hamiltonian, Complexity, 5813596, 2019.

    Google Scholar

    [33] H. Zang, M. Han and D. Xiao, On Melnikov functions of a homoclinic loop through a nilpotent saddle for planar near-Hamiltonian system, J. Differ. Equat., 2008, 245, 1086–1111. doi: 10.1016/j.jde.2008.04.018

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(2095) PDF downloads(547) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint