[1]
|
U. Akhmetov and D. Aruǧaslan, Bifurcation of a non-smooth planar limit cycle from a vertex, Nonlinear Analysis-TMA, 2009, 71, 2723–2733. doi: 10.1016/j.na.2009.06.031
CrossRef Google Scholar
|
[2]
|
U. Akhmetov, On the smoothness of solutions of differential equations with a discontinuous right-hand side, Ukrainian Math. J., 1993, 45, 1785–1792. doi: 10.1007/BF01061348
CrossRef Google Scholar
|
[3]
|
J. Budd, A.R. Champneys, and P. Kowalczyk, Piecewise smooth dynamical systems, theory and applications, Springer-Verlag, London, 2008.
Google Scholar
|
[4]
|
J. Budd, Non-smooth dynamical systems and the grazing bifurcation. In: Nonlinear mathematics and its applications, Guildford, 1995. Cambridge: Cambridge University Press, 1996, 219–235.
Google Scholar
|
[5]
|
B. Coll, A. Gasull, and R. Prohens, Degenerate Hopf bifurcations in discontinuous planar systems, J. Math. Anal. Appl., 2001, 253, 671–690. doi: 10.1006/jmaa.2000.7188
CrossRef Google Scholar
|
[6]
|
H. Dankowicz and A.B. Nordmark, On the origin and bifurcations of stick-slip oscillations, Physica D, 2000, 136, 280–302. doi: 10.1016/S0167-2789(99)00161-X
CrossRef Google Scholar
|
[7]
|
D. Euzébio and J.Llibre, On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. Anal. Appl., 2015, 424, 475–486. doi: 10.1016/j.jmaa.2014.10.077
CrossRef Google Scholar
|
[8]
|
F. Filipov, Differential equations with discontionuous righthand sides, Kluwer Academic, Netherlands, 1988.
Google Scholar
|
[9]
|
I. Feigin, Doubling of the oscillation period with C-bifurcations in piecewise-continuous systems, J. Appl. Math. Mech., 1970, 34, 822–830. doi: 10.1016/0021-8928(70)90064-X
CrossRef Google Scholar
|
[10]
|
M. Han, L. Sheng, Bifurcation of limit cycles in piecewise smooth system via Melnikov function, Journal of Applied Analysis and Computation, 2015, 5, 809–815.
Google Scholar
|
[11]
|
M. Han, On the maximal number of periodic solution of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 2017, 7, 788–794.
Google Scholar
|
[12]
|
M. Han, V.G. Romanovski, and X. Zhang, Equivalence of the Melnikov Function Method and the Averaging Method, Qual. Theory Dyn. Syst., 2016, 15, 471–479. doi: 10.1007/s12346-015-0179-3
CrossRef Google Scholar
|
[13]
|
M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differential Equations, 2010, 248, 2399–2416. doi: 10.1016/j.jde.2009.10.002
CrossRef Google Scholar
|
[14]
|
M. Han, H. Yan, J. Yang, and C. Lhotka, On the number of limit cycles of some Liénard systems, Can. Appl. Math. Q., 2009, 17, 61–83.
Google Scholar
|
[15]
|
M. Han, J. Yang, and P. Yu, Hopf bifurcations for near-Hamiltonian systems, Internat. J. Bifur. Chaos, 2009, 19, 4117–4130. doi: 10.1142/S0218127409025250
CrossRef Google Scholar
|
[16]
|
N. Hu and Z. Du, Bifurcation of periodic orbits emanated from a vertex in discontinuous planar systems, Commun. Nonlinear Sci. Numer. Simulat., 2013, 18, 3436–3448. doi: 10.1016/j.cnsns.2013.05.012
CrossRef Google Scholar
|
[17]
|
X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Internat. J. Bifur. Chaos, 2010, 5, 1–12.
Google Scholar
|
[18]
|
F. Liang, M. Han, and V.G. Romanovski, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Analysis-TMA, 2012, 75, 4355–4374. doi: 10.1016/j.na.2012.03.022
CrossRef Google Scholar
|
[19]
|
F. Liang and M. Han, Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos, Solition & Fractals, 2012, 45, 150–162.
Google Scholar
|
[20]
|
F. Liang, M. Han, and X. Zhang, Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems, J. Differential Equations, 2013, 255, 4403–4436. doi: 10.1016/j.jde.2013.08.013
CrossRef Google Scholar
|
[21]
|
Y. Li and Z. Du, Applying Battelli-Fêchan's method to transversal heteroclinic bifurction in piecewise smooth systems, Discrete Cont. Dynam. System B, 2019, 24, 6025–6052.
Google Scholar
|
[22]
|
J. Llibre, D.D. Novaes, and M.A. Teixeira, Averaging methods for studying the periodic orbits of discontinuous differential systems, IMECC Technical Report, 2012, 8.
Google Scholar
|
[23]
|
J. Llibre and A.C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, J. Math. Anal. Appl., 2014, 413, 763–775. doi: 10.1016/j.jmaa.2013.12.031
CrossRef Google Scholar
|
[24]
|
J. Llibre and M.A. Teixeira, Limit cycles for $m$-piecewise discontinuous polynomial Liénard differential equations, Z. Angew. Math. Phys., 2014. DOI10.1007/s00033-013-0393-2.
Google Scholar
|
[25]
|
I. Leine and H. Nijmeijer, Dynamics and bifurcations of nonsmooth mechanical systems, Berlin, Lecture Notes in Applied and Computational Mechanics, Springer-Verlag, 2004.
Google Scholar
|
[26]
|
D. Pi and X. Zhang, The sliding bifurcations in planar piecewise Smooth differential Systems, J. Dyn. Diff. Equat., 2013, 25, 1001–1026. doi: 10.1007/s10884-013-9327-0
CrossRef Google Scholar
|
[27]
|
A. Tonnelier, On the number of limit cycles in piecewise-linear Liénard systems, Internat. J. Bifur. Chaos, 2005, 15, 1417–1422. doi: 10.1142/S0218127405012624
CrossRef Google Scholar
|
[28]
|
A. Tonnelier, The McKean's caricature of the FitzHugh-Nagumo model. I: The space-clamped system, SIAM J. Appl. Math., 2002, 63, 459–484.
Google Scholar
|
[29]
|
Y. Xiong and M. Han, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system, Abstract and Applied Analysis., 2013, Article ID 575390, 19 pages.
Google Scholar
|
[30]
|
Y. Xiong and M. Han, Limit cycle bifurcations in a class of perturbed piecewise smooth systems, Applied Mathematics and Computation, 2014, 242, 47–64. doi: 10.1016/j.amc.2014.05.035
CrossRef Google Scholar
|
[31]
|
Y. Xiong and M. Han, Stability of a homoclinic loop and limit cycle bifurcations in non-smooth systems, Chaos, Solitons & Fractals, 2015, 78, 107–117.
Google Scholar
|
[32]
|
Y. Xiong and H. Zhong, The number of limit cycles in a $Z_2$-equivariant Liénard system, Internat. J. Bifur. Chaos, 2013, 23(5), Article ID 1350085, 17 pages.
Google Scholar
|
[33]
|
W. Xu and C. Li, Limit cycles of some polynomial Liénard systems, J. Math. Anal. Appl., 2012, 389, 367–378. doi: 10.1016/j.jmaa.2011.11.070
CrossRef Google Scholar
|
[34]
|
Y. Zou and T. Küpper, Generalized Hopf bifurcation emanated from a corner for piecewise smooth planar systems, Nonlinear Analysis-TMA, 2005, 62, 1–17. doi: 10.1016/j.na.2004.06.004
CrossRef Google Scholar
|