[1]
|
Z. Cheng and J. Ren, Periodic solution for second order damped differential equations with attractive-repulsive singularities, Rocky Mountain J. Math., 2018, 48, 753–768. doi: 10.1216/RMJ-2018-48-3-753
CrossRef Google Scholar
|
[2]
|
Z. Cheng and F. Li, Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 2018, 15, 19. doi: 10.1007/s00009-017-1064-x
CrossRef Google Scholar
|
[3]
|
W. Cheng, J. Ren and W. Han, Positive periodic solution of second-order neutral functional differential equations, Nonlinear Anal., 2009, 71, 3948–3955. doi: 10.1016/j.na.2009.02.064
CrossRef Google Scholar
|
[4]
|
J. Chu, P. Torres and M. Zhang, Periodic solution of second order non-autonomous singular dynamical systems, J. Differential Equations, 2007, 239, 196–212. doi: 10.1016/j.jde.2007.05.007
CrossRef Google Scholar
|
[5]
|
J. Chu and P. Torres, Applications of Schauder¡s fixed point theorem to singular differential equations, Bull. Lond. Math. Soc., 2007, 39, 653–660. doi: 10.1112/blms/bdm040
CrossRef Google Scholar
|
[6]
|
A. Fonda, R. Manásevich and F. Zanolin, Subharmonics solutions for some second order differential equations with singularities, SIAM J. Math. Anal., 1993, 24, 1294–1311. doi: 10.1137/0524074
CrossRef Google Scholar
|
[7]
|
R. Hakl and P. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differential Equations, 2010, 248, 111–126. doi: 10.1016/j.jde.2009.07.008
CrossRef Google Scholar
|
[8]
|
R. Hakl and M. Zamora, Periodic solutions to second-order indefinite singular equations, J. Differential Equations, 2017, 263, 451–469.
Google Scholar
|
[9]
|
D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differential Equations, 2005, 211, 282–302. doi: 10.1016/j.jde.2004.10.031
CrossRef Google Scholar
|
[10]
|
A. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 1987, 99, 109–114. doi: 10.1090/S0002-9939-1987-0866438-7
CrossRef Google Scholar
|
[11]
|
R. Ma, R. Chen and Z. He, Positive periodic solutions of second-order differential equations with weak singularities, Appl. Math. Comput., 2014, 232, 97–103.
Google Scholar
|
[12]
|
J. Ren, D. Zhu and H. Wang, Spreading-vanishing dichotomy in information diffusion in online social networks with intervention, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24, 1843–1865.
Google Scholar
|
[13]
|
I. Rachunková, M. Tvrdý and Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. Differential Equations, 2001, 176, 445–469. doi: 10.1006/jdeq.2000.3995
CrossRef Google Scholar
|
[14]
|
P. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations, 2007, 232, 277–284. doi: 10.1016/j.jde.2006.08.006
CrossRef Google Scholar
|
[15]
|
P, Torres, Existence and stability of periodic solutions for second-order semilinear differential equations with a singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 2007, 137, 195–201. doi: 10.1017/S0308210505000739
CrossRef Google Scholar
|
[16]
|
A. Urena, Periodic solutions of singular equations, Topol. Methods Nonlinear Anal., 2016, 47, 55–72.
Google Scholar
|
[17]
|
H. Wang, Positive periodic solutions of singular systems with a parameter, J. Differential Equations, 2010, 249, 2986–3002. doi: 10.1016/j.jde.2010.08.027
CrossRef Google Scholar
|
[18]
|
Z. Wang and T. Ma, Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities, Nonlinearity, 2012, 25, 279–307. doi: 10.1088/0951-7715/25/2/279
CrossRef Google Scholar
|
[19]
|
Z. Wang, Periodic solutions of Liénard equation with a singularity and a deviating argument, Nonlinear Anal. Real World Appl., 2014, 16, 227–234. doi: 10.1016/j.nonrwa.2013.09.021
CrossRef Google Scholar
|
[20]
|
Y. Xin and Z. Cheng, Positive periodic solution to indefinite singular LišŠnard equation, Positivity, 2019, 23, 779–787. doi: 10.1007/s11117-018-0637-7
CrossRef Google Scholar
|
[21]
|
S. Yao and J. Liu, Study on variable coeffcients singular differential equation via constant coeffcients differential equation, Bound. Value Probl., 2019, 2019(3), 24 pp.
Google Scholar
|
[22]
|
E. Zeidler, Applied functional analysis, New York: Springer-Verlag, 1995.
Google Scholar
|
[23]
|
M. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type, J. Math. Anal. Appl., 1996, 203, 254–269. doi: 10.1006/jmaa.1996.0378
CrossRef Google Scholar
|