[1]
|
Y. An and M. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point, J. Diff. Eqns., 2015, 258, 3194-3247. doi: 10.1016/j.jde.2015.01.006
CrossRef Google Scholar
|
[2]
|
F. Battelli and K. J. Palmer, Tangencies between stable and unstable manifolds, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1992, 121, 73-90. doi: 10.1017/S0308210500014153
CrossRef Google Scholar
|
[3]
|
S. N. Chow, J. K. Hale and J. Mallet-Parret, An example of bifurcation to homoclinic orbits, J. Diff. Equs., 1980, 37, 551-573.
Google Scholar
|
[4]
|
F. Chen and Q. Wang, High order Melnikov method: Theory and application, J. Diff. Eqns., 2019, DOI:10.1016/j.jde.2019.02.003.
CrossRef Google Scholar
|
[5]
|
F. Chen and Q. Wang, High order Melnikov method for time-periodic equations, Adv. Nonlinear Stud., 2017, 17, 793-818. doi: 10.1515/ans-2017-6017
CrossRef Google Scholar
|
[6]
|
M. Fečkan, Bifurcation from degenerate homoclinics in periodically forced systems, Discr. Cont. Dyn. Systems, 1999, 5, 359-374. doi: 10.3934/dcds.1999.5.359
CrossRef Google Scholar
|
[7]
|
M. Fečkan, Higher dimensional Melnikov mappings, Mathematica Slovaca, 1999, 1, 75-83.
Google Scholar
|
[8]
|
J. R. Gruendler, Homoclinic solutions for autonomous systems in arbitrary dimension, SIAM J.Math. Anal., 1992, 23, 702-721. doi: 10.1137/0523036
CrossRef Google Scholar
|
[9]
|
J. R. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbation, J. Diff. Equs., 1995, 122, 1-26. doi: 10.1006/jdeq.1995.1136
CrossRef Google Scholar
|
[10]
|
J. R. Gruendler, The existence of transverse homoclinic solutions for higher order equations, J. Diff. Equs., 1996, 130, 307-320. doi: 10.1006/jdeq.1996.0145
CrossRef Google Scholar
|
[11]
|
J. R. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
Google Scholar
|
[12]
|
J. K. Hale, Introduction to dynamic bifurcation, in "Bifurcation Theory and Applications, " p. 106-151, Lecture Notes in Mathematics, V. 1057, Springer-Verlag, Berlin, 1984.
Google Scholar
|
[13]
|
M. Han, Asymptotic expansions of melnikov functions and limit cycle bifurcations, International Journal of Bifurcation and Chaos, 2012, 22, 1250296. doi: 10.1142/S0218127412502963
CrossRef Google Scholar
|
[14]
|
M. Han and P. Yu, Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles, Springer-Verlag, New York 2012.
Google Scholar
|
[15]
|
J. Knobloch, Bifurcation of degenerate homoclinics in reversible and conservative systems, J. Dyn. Diff. Eqns., 1997, 9, 427-444. doi: 10.1007/BF02227489
CrossRef Google Scholar
|
[16]
|
L. M. Lerman and I. L. Umanskii, On the existence of separatrix loops in four-dimensional systems similar to the integrable hamiltonian systems, Journal of Applied Mathematics and Mechanics, 1984, 47, 335-340.
Google Scholar
|
[17]
|
V. K. Melnikov, On the stability of the center for time periodic perturbation, Trans. Moscow Math. Soc., 1963, 12, 1-57.
Google Scholar
|
[18]
|
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equs., 1984, 55, 225-256. doi: 10.1016/0022-0396(84)90082-2
CrossRef Google Scholar
|
[19]
|
K. J. Palmer, Existence of transversal homoclinic points in a degenerative case, Rocky Mountain Journal of Mathematics, 1990, 20, 1099-1118. doi: 10.1216/rmjm/1181073065
CrossRef Google Scholar
|
[20]
|
C. Zhu and W. Zhang, Homoclinic finger-rings in $R.N$, J. Diff. Eqns., 2017, 263, 3460-3490. doi: 10.1016/j.jde.2017.04.026
CrossRef Google Scholar
|