2020 Volume 10 Issue 4
Article Contents

Bin Long, Changrong Zhu. TRANSVERSE HOMOCLINIC ORBIT BIFURCATED FROM A HOMOCLINIC MANIFOLD BY THE HIGHER ORDER MELNIKOV INTEGRALS[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1651-1665. doi: 10.11948/20190311
Citation: Bin Long, Changrong Zhu. TRANSVERSE HOMOCLINIC ORBIT BIFURCATED FROM A HOMOCLINIC MANIFOLD BY THE HIGHER ORDER MELNIKOV INTEGRALS[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1651-1665. doi: 10.11948/20190311

TRANSVERSE HOMOCLINIC ORBIT BIFURCATED FROM A HOMOCLINIC MANIFOLD BY THE HIGHER ORDER MELNIKOV INTEGRALS

  • Corresponding author: Email address:longbin210@126.com(B. Long) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11801343) and Natural Science Basic Research Plan in Shaanxi Province of China(No. 2018JQ1031)
  • Consider an autonomous ordinary differential equation in $ \mathbb{R}^n $ that has a $ d $ dimensional homoclinic solution manifold $ W^H $. Suppose the homoclinic manifold can be locally parametrized by $ (\alpha,\theta) \in \mathbb{R}^{d-1}\times \mathbb{R} $. We study the bifurcation of the homoclinic solution manifold $ W^H $ under periodic perturbations. Using exponential dichotomies and Lyapunov-Schmidt reduction, we obtain the higher order Melnikov function. For a fixed $ (\alpha_0,\theta_0) $ on $ W^H $, if the Melnikov function have a simple zeros, then the perturbed system can have transverse homoclinic solutions near $ W^H $.
    MSC: 34C23, 34C37, 34C45
  • 加载中
  • [1] Y. An and M. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point, J. Diff. Eqns., 2015, 258, 3194-3247. doi: 10.1016/j.jde.2015.01.006

    CrossRef Google Scholar

    [2] F. Battelli and K. J. Palmer, Tangencies between stable and unstable manifolds, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1992, 121, 73-90. doi: 10.1017/S0308210500014153

    CrossRef Google Scholar

    [3] S. N. Chow, J. K. Hale and J. Mallet-Parret, An example of bifurcation to homoclinic orbits, J. Diff. Equs., 1980, 37, 551-573.

    Google Scholar

    [4] F. Chen and Q. Wang, High order Melnikov method: Theory and application, J. Diff. Eqns., 2019, DOI:10.1016/j.jde.2019.02.003.

    CrossRef Google Scholar

    [5] F. Chen and Q. Wang, High order Melnikov method for time-periodic equations, Adv. Nonlinear Stud., 2017, 17, 793-818. doi: 10.1515/ans-2017-6017

    CrossRef Google Scholar

    [6] M. Fečkan, Bifurcation from degenerate homoclinics in periodically forced systems, Discr. Cont. Dyn. Systems, 1999, 5, 359-374. doi: 10.3934/dcds.1999.5.359

    CrossRef Google Scholar

    [7] M. Fečkan, Higher dimensional Melnikov mappings, Mathematica Slovaca, 1999, 1, 75-83.

    Google Scholar

    [8] J. R. Gruendler, Homoclinic solutions for autonomous systems in arbitrary dimension, SIAM J.Math. Anal., 1992, 23, 702-721. doi: 10.1137/0523036

    CrossRef Google Scholar

    [9] J. R. Gruendler, Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbation, J. Diff. Equs., 1995, 122, 1-26. doi: 10.1006/jdeq.1995.1136

    CrossRef Google Scholar

    [10] J. R. Gruendler, The existence of transverse homoclinic solutions for higher order equations, J. Diff. Equs., 1996, 130, 307-320. doi: 10.1006/jdeq.1996.0145

    CrossRef Google Scholar

    [11] J. R. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

    Google Scholar

    [12] J. K. Hale, Introduction to dynamic bifurcation, in "Bifurcation Theory and Applications, " p. 106-151, Lecture Notes in Mathematics, V. 1057, Springer-Verlag, Berlin, 1984.

    Google Scholar

    [13] M. Han, Asymptotic expansions of melnikov functions and limit cycle bifurcations, International Journal of Bifurcation and Chaos, 2012, 22, 1250296. doi: 10.1142/S0218127412502963

    CrossRef Google Scholar

    [14] M. Han and P. Yu, Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles, Springer-Verlag, New York 2012.

    Google Scholar

    [15] J. Knobloch, Bifurcation of degenerate homoclinics in reversible and conservative systems, J. Dyn. Diff. Eqns., 1997, 9, 427-444. doi: 10.1007/BF02227489

    CrossRef Google Scholar

    [16] L. M. Lerman and I. L. Umanskii, On the existence of separatrix loops in four-dimensional systems similar to the integrable hamiltonian systems, Journal of Applied Mathematics and Mechanics, 1984, 47, 335-340.

    Google Scholar

    [17] V. K. Melnikov, On the stability of the center for time periodic perturbation, Trans. Moscow Math. Soc., 1963, 12, 1-57.

    Google Scholar

    [18] K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equs., 1984, 55, 225-256. doi: 10.1016/0022-0396(84)90082-2

    CrossRef Google Scholar

    [19] K. J. Palmer, Existence of transversal homoclinic points in a degenerative case, Rocky Mountain Journal of Mathematics, 1990, 20, 1099-1118. doi: 10.1216/rmjm/1181073065

    CrossRef Google Scholar

    [20] C. Zhu and W. Zhang, Homoclinic finger-rings in $R.N$, J. Diff. Eqns., 2017, 263, 3460-3490. doi: 10.1016/j.jde.2017.04.026

    CrossRef Google Scholar

Article Metrics

Article views(1976) PDF downloads(403) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint