2020 Volume 10 Issue 5
Article Contents

Chang-Mu Chu, Haidong Liu. INFINITELY MANY LOW- AND HIGH-ENERGY SOLUTIONS FOR A CLASS OF ELLIPTIC EQUATIONS WITH VARIABLE EXPONENT[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2024-2035. doi: 10.11948/20190319
Citation: Chang-Mu Chu, Haidong Liu. INFINITELY MANY LOW- AND HIGH-ENERGY SOLUTIONS FOR A CLASS OF ELLIPTIC EQUATIONS WITH VARIABLE EXPONENT[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2024-2035. doi: 10.11948/20190319

INFINITELY MANY LOW- AND HIGH-ENERGY SOLUTIONS FOR A CLASS OF ELLIPTIC EQUATIONS WITH VARIABLE EXPONENT

  • Corresponding author: Email: gzmychuchangmu@sina.com.(C. Chu) 
  • Fund Project: C. Chu is supported by National Natural Science Foundation of China (No. 11861021). H. Liu is supported National Natural Science Foundation of China (Nos. 11701220, 11926334, 11926335)
  • This paper is concerned with the $ p(x) $-Laplacian equation of the form $\left\{ \begin{array}{l} - {\Delta _{p(x)}}u = Q(x)|u{|^{r(x) - 2}}u,{\rm{ in}}\;\Omega ,\\ {\rm{u = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; on}}\;\partial \Omega , \end{array} \right.$ where $ \Omega\subset{\mathbb{R}}^N $ is a smooth bounded domain, $ 1<p^- = \min_{x\in\overline{\Omega}}p(x)\leq p(x)\leq\max_{x\in\overline{\Omega}}p(x) = p^+<N $, $ 1\leq r(x)<p^{*}(x) = \frac{Np(x)}{N-p(x)} $, $ r^- = \min_{x\in \overline{\Omega}}r(x)<p^- $, $ r^+ = \max_{x\in\overline{\Omega}}r(x)>p^+ $ and $ Q: \overline{\Omega}\to{\mathbb{R}} $ is a nonnegative continuous function. We prove that (0.1) has infinitely many small solutions and infinitely many large solutions by using the Clark's theorem and the symmetric mountain pass lemma.
  • 加载中
  • [1] S. Aouaoui, Multiple solutions to some degenerate quasilinear equation with variable exponents via perturbation method, J. Math. Anal. Appl., 2018, 458(2018), 1568-1596.

    Google Scholar

    [2] S. Aouaoui, Eigenvalue problem with nonstandard concave and convex nonlinearities, Mediterr. J. Math., 2014, 11, 1149-1169. doi: 10.1007/s00009-013-0333-6

    CrossRef Google Scholar

    [3] S. Aouaoui, Existence and multiplicity results for some eigenvalue problems involving variable exponents, Nonlinear Anal., 2013, 80, 76-87. doi: 10.1016/j.na.2012.12.007

    CrossRef Google Scholar

    [4] S. Aouaoui, Existence of solutions for eigenvalue problems with nonstandard growth conditions, Electron. J. Differ. Eq., 2013, 176, 1-14. doi: 10.1186/1687-2770-2013-177

    CrossRef Google Scholar

    [5] G. M. Bisci, V.D. Radulescu and R. Servadei, Low- and high-energy solutions of nonlinear elliptic oscillatory problems, C. R. Math. Acad. Sci. Paris, 2014, 352(2), 117-122. doi: 10.1016/j.crma.2013.11.015

    CrossRef Google Scholar

    [6] J. Chabrowski and Y. Fu, Existence of solutions for $p(x)$-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 2005, 306, 604-618. doi: 10.1016/j.jmaa.2004.10.028

    CrossRef Google Scholar

    [7] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 2006, 66, 1383-1406. doi: 10.1137/050624522

    CrossRef Google Scholar

    [8] X. Fan, Remarks on eigenvalue problems involving the $p(x)$-Laplacian, J. Math. Anal. Appl., 2009, 352, 85-98. doi: 10.1016/j.jmaa.2008.05.086

    CrossRef Google Scholar

    [9] X. Fan, Global $C.{1, \alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations, 2007, 235, 397-417. doi: 10.1016/j.jde.2007.01.008

    CrossRef Google Scholar

    [10] X. Fan and Q. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 2003, 52, 1843-1852. doi: 10.1016/S0362-546X(02)00150-5

    CrossRef Google Scholar

    [11] X. Fan and D. Zhao, On the generalized Orlicz-Sobolev space $W.{m, p(x)}(\Omega)$, J. Gansu Educ. College, 1998, 12, 1-6.

    Google Scholar

    [12] J. Gao, P. Zhao and Y. Zhang, Compact Sobolev embedding theorems involving symmetry and its application, Nonlinear Differential Equations Appl., 2010, 17, 161-180. doi: 10.1007/s00030-009-0046-5

    CrossRef Google Scholar

    [13] J. Garcia-Mellian, J.D. Rossi and J.C.S De Lis, A variable exponent diffusion problem of concave-convex nature, Topological Methods in Nonlinear Analysis, 2016, 47, 613-639.

    Google Scholar

    [14] C. Ji and F. Fang, Infinitely many solutions for the $p(x)$-Laplacian equations without $(AR)$-type growth condition, Ann. Polon. Math., 2012, 105, 87-99. doi: 10.4064/ap105-1-8

    CrossRef Google Scholar

    [15] R. Kajikiya, Superlinear elliptic equations with singular coefficients on the boundary, Nonlinear Anal., 2010, 73, 2117-2131. doi: 10.1016/j.na.2010.05.039

    CrossRef Google Scholar

    [16] Y. Komiya and R. Kajikiya, Existence of infinitely many solutions for the $(p, q)$-Laplace equation, Nonlinear Differ. Equ. Appl., 2016, 49, 1-23.

    Google Scholar

    [17] Z. Liu and Z. Wang, On Clark's theorem and its applications to partially sublinear problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2015, 32, 1015-1037. doi: 10.1016/j.anihpc.2014.05.002

    CrossRef Google Scholar

    [18] R. A. Mashiyev, S. Ogras, Z. Yucedag and M. Avci, The Nehari manifold approach for Dirichlet problem involving the $p(x)$-Laplacian equation, J. Korean Math. Soc., 2010, 47, 845-860. doi: 10.4134/JKMS.2010.47.4.845

    CrossRef Google Scholar

    [19] M. Mih$\check{a}$ilescu and V. R$\check{a}$dulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 2017, 135, 2929-2937.

    Google Scholar

    [20] T. C. Nguyen, Multiple solutions for a class of $p(x)$-Laplacian problems involving concave-convex nonlinearities, Electron. J. Qual. Theory Differential Equations, 2013, 26, 1-17.

    Google Scholar

    [21] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, American Mathematical Society, Providence, RI, 1986.

    Google Scholar

    [22] V. R$\check{a}$dulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 2015, 121, 336-369. doi: 10.1016/j.na.2014.11.007

    CrossRef Google Scholar

    [23] M. R$\mathring{\mbox{u}}$žička, Electrorheological fluids: modeling and mathematical theory, Volume 1748 of Lecture Notes in Mathematics, Springer, Berlin, 2000.

    Google Scholar

    [24] E. A. B. Silva and M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2003, 20, 341-358. doi: 10.1016/S0294-1449(02)00013-6

    CrossRef Google Scholar

    [25] Z. Tan and F. Fang, On superlinear $p(x)$-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 2012, 75, 3902-3915. doi: 10.1016/j.na.2012.02.010

    CrossRef Google Scholar

    [26] J. Yao and X. Wang, On an open problem involving the $p(x)$-Laplacian--a further study on the multiplicity of weak solutions to $p(x)$-Laplacian equations, Nonlinear Anal., 2008, 69, 1445-1453. doi: 10.1016/j.na.2007.06.044

    CrossRef Google Scholar

    [27] Z. Yucedag, Existence of solutions for $p(x)$ Laplacian equations without Ambrosetti-Rabinowitz type condition, Bull. Malays. Math. Sci. Soc., 2015, 38, 1023-1033. doi: 10.1007/s40840-014-0057-1

    CrossRef Google Scholar

    [28] A. Zang, $p(x)$-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 2008, 337, 547-555. doi: 10.1016/j.jmaa.2007.04.007

    CrossRef Google Scholar

    [29] Q. Zhang and C. Zhao, Existence of strong solutions of a $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 2015, 69, 1-12. doi: 10.1016/j.camwa.2014.10.022

    CrossRef Google Scholar

Article Metrics

Article views(2699) PDF downloads(429) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint