[1]
|
R. Bagley, On the equivalence of the Riemann-Liouville and the Caputo fractional order derivatives in modeling of linear viscoelastic materials, Fract. Calc. Appl. Anal., 2007, 10(2), 123-126.
Google Scholar
|
[2]
|
M. Du, Y. Wang and Z. Wang, Effect of the initial ramps of creep and relaxation tests on models with fractional derivatives, Meccanica 2017, 52, 3541šC3547.
Google Scholar
|
[3]
|
T. T. Hartley, C. F. Lorenzo, J. C. Trigeassou, et al., Equivalence of history-function based and infinite-dimensional-state initializations for fractional-order operators, J. Comput. Nonlin. Dyn., 2013, 8(4), 041014(1-7).
Google Scholar
|
[4]
|
C. F. Lorenzo and T. T. Hartley, Initialization of fractional-order operators and fractional differential equations, J. Comput. Nonlin. Dyn., 2008, 3(2), 021101. doi: 10.1115/1.2833585
CrossRef Google Scholar
|
[5]
|
C. F. Lorenzo and T. T. Hartley, Dynamics and control of initialized fractional-order systems, Nonlinear Dynam., 2002, 29(1-4), 201-233.
Google Scholar
|
[6]
|
C. F. Lorenzo and T. T. Hartley, Time-varying initialization and Laplace transform of the Caputo derivative: with order between zero and one, in Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE '11), Washington, DC, USA, August 2011, 28-31.
Google Scholar
|
[7]
|
C. F. Lorenzo and T. T. Hartley, Initialized fractional calculus, 2000, NASA/TP-2000-209943.
Google Scholar
|
[8]
|
C. F. Lorenzo and T. T. Hartley, Initialization, conceptualization, and application in the generalized fractional calculus, 1998, NASA/TP-1998-208415.
Google Scholar
|
[9]
|
M. D. Ortigueira and F. J. Coito, System initial conditions vs derivative initial conditions, Comput. Math. Appl., 2010 59(5), 1782-1789. doi: 10.1016/j.camwa.2009.08.036
CrossRef Google Scholar
|
[10]
|
I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, CA., 1999.
Google Scholar
|
[11]
|
M. D. Paola, V. Fiore, F. P. Pinnola, et al., On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials, Mech. Mater., 2014, 69(1), 63-70. doi: 10.1016/j.mechmat.2013.09.017
CrossRef Google Scholar
|
[12]
|
J. Sabatier, M. Merveillaut, R. Malti, et al., How to impose physically coherent initial conditions to a fractional system?, J. Sci. Commun., 2010, 15(5), 1318-1326.
Google Scholar
|
[13]
|
J. C. Trigeassou, N. Maamri, J. Sabatier, et al., State variables and transients of fractional order differential systems, Comput. Math. Appl., 2011, 64(10), 3117-3140.
Google Scholar
|
[14]
|
J. C. Trigeassou, N. Maamri and A. Oustaloup, Lyapunov stability of noncommensurate fractional order systems: an energy balance approach, J. Comput. Nonlin. Dyn., 2016, 11(4), 041007. doi: 10.1115/1.4031841
CrossRef Google Scholar
|
[15]
|
J. C. Trigeassou and N. Maamri, The initial conditions of Riemman-Liouville and Caputo derivatives: an integrator interpretation, International Conference on Fractional Differentiation and its Applications, Badajoz, Spain, October, 2010.
Google Scholar
|
[16]
|
J. C. Trigeassou and N. Maamri, Analysis, modeling and stability of fractional order differential systems 1: the infinite state approach, ISTE Ltd and John Wiley & Sons, London, Hoboken, 2019.
Google Scholar
|
[17]
|
Y. Wei, Y. Chen, J. Wang, et al., Analysis and description of the infinite-dimensional nature for nabla discrete fractional order systems, Commun. Nonlinear Sci., 2019, 72, 472-492. doi: 10.1016/j.cnsns.2018.12.023
CrossRef Google Scholar
|
[18]
|
J. Yuan, Y. Zhang, J. Liu, et al., Equivalence of initialized fractional integrals and the diffusive model, J. Comput. Nonlin. Dyn., 2018, 13(3), 034501(1-4).
Google Scholar
|
[19]
|
Y. Zhao, Y. Wei, Y. Chen, et al., A new look at the fractional initial value problem: the aberration phenomenon, ASME J. Comput. Nonlinear Dyn., 2018, 13(12), 121004. doi: 10.1115/1.4041621
CrossRef Google Scholar
|
[20]
|
Y. Zhao, Y. Wei, J. Shuai, et al., Fitting of the initialization function of fractional order systems, Nonlinear Dynam., 2018, 93(3), 1589-1598. doi: 10.1007/s11071-018-4278-y
CrossRef Google Scholar
|