2020 Volume 10 Issue 5
Article Contents

Elhoussine Azroul, Farah Balaadich. GENERALIZED P(X)-ELLIPTIC SYSTEM WITH NONLINEAR PHYSICAL DATA[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1995-2007. doi: 10.11948/20190309
Citation: Elhoussine Azroul, Farah Balaadich. GENERALIZED P(X)-ELLIPTIC SYSTEM WITH NONLINEAR PHYSICAL DATA[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1995-2007. doi: 10.11948/20190309

GENERALIZED P(X)-ELLIPTIC SYSTEM WITH NONLINEAR PHYSICAL DATA

  • This paper considers the following Dirichlet problem of the form $ -\text{div}\, \big(\Phi(Du-\Theta(u)\big) = v(x)+f(x, u)+\text{div}\, \big(g(x, u)\big), $ which corresponds to a diffusion problem with a source $ v $ in moving and dissolving substance, the motion is described by $ g $ and the dissolution by $ f $. By the theory of Young measure we will prove the existence result in variable exponent Sobolev spaces $ W^{1, p(x)}_0(\Omega; \mathbb{R}^m) $.
    MSC: 35Jxx, 46E30, 35D30, 28Axx
  • 加载中
  • [1] E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal., 2001, 156, 121-140. doi: 10.1007/s002050100117

    CrossRef Google Scholar

    [2] S. Antontsev and S. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 2005, 60(3), 515-545. doi: 10.1016/j.na.2004.09.026

    CrossRef Google Scholar

    [3] S. N. Antontsev and J. F. Rodrigues, On stationary thermorheological viscous flows, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 2006, 52(1), 19-36. doi: 10.1007/s11565-006-0002-9

    CrossRef Google Scholar

    [4] E. Azroul, M. B. Benboubker and S. Ouaro, Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized p(x)-Laplace operator, J. Appl. Anal. Comput., 2013, 3(2), 105-121.

    Google Scholar

    [5] E. Azroul, M. B. Benboubker and M. Rhoudaf, On some p(x)-quasilinear problem with right-hand side measure, Math. Comput. Simulation., 2013, 102, 117-130.

    Google Scholar

    [6] E. Azroul and F. Balaadich, Weak solutions for generalized p-Laplacian systems via Young measures, Moroccan J. of Pure and Appl. Anal., 2018, 4(2), 76-83.

    Google Scholar

    [7] E. Azroul and F. Balaadich, Quasilinear elliptic systems in perturbed form, Int. J. Nonlinear Anal. Appl., 2019, 10(2), 255-266.

    Google Scholar

    [8] E. Azroul and F. Balaadich, Existence of solutions for generalized p(x)-Laplacian systems, Rend. Circ. Mat. Palermo, 2019, 2. https://doi.org/10.1007/s12215-019-00450-z doi: 10.1007/s12215-019-00450-z

    CrossRef Google Scholar

    [9] E. Azroul and F. Balaadich, A weak solution to quasilinear elliptic problems with perturbed gradient, Rend. Circ. Mat. Palermo, 2020, 2. https://doi.org/10.1007/s12215-020-00488-4 doi: 10.1007/s12215-020-00488-4

    CrossRef Google Scholar

    [10] A. Bahrouni and D. D. Repovš, Existence and nonexistence of solutions for p(x)-curl systems arising in electromagnetism, Complex Var. Elliptic Equ., 2018, 63(2), 292-301. doi: 10.1080/17476933.2017.1304390

    CrossRef Google Scholar

    [11] M. Ball, A version of the fundamental theorem for Young measures. In: PDEs and Continuum Models of Phase Transitions (Nice, 1988), Lecture Notes in Phys., 1989, 344, 207-215.

    Google Scholar

    [12] N. Bourbaki, Integration I (S. Berberian, Trans.), Springer-Verlag, Berlin, Heidelberg, 2004, (Chapters 1-6).

    Google Scholar

    [13] T. A. Bui, Global $W.{1, p(\cdot)}$ estimate for renormalized solutions of quasilinear equations with measure data on Reifenberg domains, Adv. Nonlinear Anal., 2018, 7(4), 517-533. doi: 10.1515/anona-2016-0095

    CrossRef Google Scholar

    [14] M. Eleuteri, P. Marcellini and E. Mascolo, Lipschitz estimates for systems with ellipticity conditions at infnity, Ann. Math. Pura Appl., 2016, 195, 1575-1603. doi: 10.1007/s10231-015-0529-4

    CrossRef Google Scholar

    [15] C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Am. Math. Soc., New York, 1990.

    Google Scholar

    [16] X. Fan and D. Zhao, On the generalized Orlicz-Sobolev space $W.{k, p(x)}(\Omega)$, J. Gansu Educ., College, 1998, 12(1), 1-6.

    Google Scholar

    [17] N. Hunger${\rm{\ddot b}}$uhler, A refinement of Ball's theorem on Young measures, N.Y. J. Math., 1997, 3, 48-53.

    Google Scholar

    [18] O. Kováčik and J. Ràkosník, On spaces $L.{p(x)}(\Omega)$ and $W.{k, p(x)}(\Omega)$, Czechoslovak Math. J., 1991, 41(116), 592-618.

    Google Scholar

    [19] M. Lieberman, The natural generalizationj of the natural conditions of ladyzhenskaya and uraltseva for elliptic equations, Comm. Partial Differential Equations., 1991, 16(2-3), 311-361. doi: 10.1080/03605309108820761

    CrossRef Google Scholar

    [20] J. Málek, J. Necas, M. Rokyta and M. Ružička, Weak and measure-valued solutions to evolutionary PDEs, Chapman & Hall, London, 1996.

    Google Scholar

    [21] V. D. Radulescu and D. D. Repovš, Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monogr. Res. Notes Math., 2015.

    Google Scholar

    [22] E. Zeidler, Nonlinear functional analysis and its application, volume Ⅰ. Springer, 1986.

    Google Scholar

Article Metrics

Article views(2136) PDF downloads(390) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint