2020 Volume 10 Issue 5
Article Contents

Kwadwo Antwi-Fordjour, Seonguk Kim, Marius Nkashama. GLOBAL ANALYSIS OF THE SHADOW GIERER-MEINHARDT SYSTEM WITH GENERAL LINEAR BOUNDARY CONDITIONS IN A RANDOM ENVIRONMENT[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1980-1994. doi: 10.11948/20190306
Citation: Kwadwo Antwi-Fordjour, Seonguk Kim, Marius Nkashama. GLOBAL ANALYSIS OF THE SHADOW GIERER-MEINHARDT SYSTEM WITH GENERAL LINEAR BOUNDARY CONDITIONS IN A RANDOM ENVIRONMENT[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 1980-1994. doi: 10.11948/20190306

GLOBAL ANALYSIS OF THE SHADOW GIERER-MEINHARDT SYSTEM WITH GENERAL LINEAR BOUNDARY CONDITIONS IN A RANDOM ENVIRONMENT

  • The global analysis of the shadow Gierer-Meinhardt system with multiplicative white noise and general linear boundary conditions is investigated in this paper. For this reaction-diffusion system, we employ a fixed point argument to prove local existence and uniqueness. Our results on global existence are based on a priori estimates of solutions.
    MSC: 60H05, 60H15, 60H30
  • 加载中
  • [1] P. Amster, Multiple solutions for an elliptic system with indefinite Robin boundary conditions, Adv. Nonlinear Anal., 2019, 8(1), 603-614.

    Google Scholar

    [2] K. Antwi-Fordjour and M. Nkashama, Global Existence of Solutions of the Gierer-Meinhardt System with Mixed Boundary Conditions, Appl. Math., 2017, 8(6), 857-867. doi: 10.4236/am.2017.86067

    CrossRef Google Scholar

    [3] P. Billingsley, Convergence of probability measures, Wiley-Interscience publication, 1999.

    Google Scholar

    [4] S. Chen, Y. Salmaniw and R. Xu, Global existence for a singular Gierer-Meinhardt system, J. Differential Equations, 2017, 262, 2940-2690. doi: 10.1016/j.jde.2016.11.022

    CrossRef Google Scholar

    [5] R. Dillon, P. K. Maini and H. G. Othmer, Pattern formation in generalized Turing systems. Ⅰ. Steady-state patterns in systems with mixed boundary conditions, J. Math. Biology, 1994, 32, 345-393. doi: 10.1007/BF00160165

    CrossRef Google Scholar

    [6] R. Durrett, Probability: theory and example, forth editions, Cambridge University Press, 2010.

    Google Scholar

    [7] A. Friedman, Partial Differential Equations, Holt-Reinhart-Winston, 1969.

    Google Scholar

    [8] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin), 1972, 12, 30-39. doi: 10.1007/BF00289234

    CrossRef Google Scholar

    [9] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, New York, 1981.

    Google Scholar

    [10] H. Jiang, Global existence of solutions of an activator-inhibitor systems, Discrete Contin. Dyn. Syst., 2006, 14(4), 737-751. doi: 10.3934/dcds.2006.14.737

    CrossRef Google Scholar

    [11] J. P. Keener, Activators and inhibitors in pattern formation, Stu. Appl. Math., 1978, 59, 1-23. doi: 10.1002/sapm19785911

    CrossRef Google Scholar

    [12] J. Kelkel and C. Surulescu, On a stochastic reaction-diffusion system modeling pattern formation on seashells, J. Math. Biology, 2010, 60, 765-796. doi: 10.1007/s00285-009-0284-5

    CrossRef Google Scholar

    [13] F. Li and W. Ni, On the global existence and finite time blow-up of shadow systems, J. Differential Equations, 2009, 247(6), 1762-1776. doi: 10.1016/j.jde.2009.04.009

    CrossRef Google Scholar

    [14] F. Li and L. Xu, Finite time blowup of the stochastic shadow Gierer-Meinhardt systmem, Electronic communications in probability, 2015, 20(65), 13.

    Google Scholar

    [15] P. K. Maini, J. Wei and M. Winter, Stability of spikes in the shadow Gierer-Meinhardt system with Robin boundary conditions, Chaos 2007, 17(3):037106. doi: 10.1063/1.2768156

    CrossRef Google Scholar

    [16] K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math., 1987, 4(1), 47-58. doi: 10.1007/BF03167754

    CrossRef Google Scholar

    [17] T. Miura and P. K. Maini, Periodic pattern formation in reaction-diffusion systems: An introduction for numerical simulation, Anatomical Science International, 2004, 79, 112-123. doi: 10.1111/j.1447-073x.2004.00079.x

    CrossRef Google Scholar

    [18] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Science, 44, Springer-Verlag, New York, 1983.

    Google Scholar

    [19] T. Phan, A remark on global existence of solutions of shadow systems, Z. Angew. Math.Phys., 2012, 63(2), 395-400. doi: 10.1007/s00033-011-0149-9

    CrossRef Google Scholar

    [20] S. Resnick, Adventures in stochastic processes, Birkhuser Boston, Inc., 1992.

    Google Scholar

    [21] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math., 1072, Springer- Verlag, New York, 1984.

    Google Scholar

    [22] A. Trembley, Memoires pour servir a l'histoire d'un genre de polypes d'eau douce, a bras en forme de cornes, A Leide : Chez Jean & Herman Verbeek, 1744.

    Google Scholar

    [23] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond., 1952, B 237, 37-72.

    Google Scholar

    [24] M. Winter, L. Xu, J. Zhai and T. Zhang, The dynamics of the stochastic shadow Gierer-Meinhardt system, Journal of Differential Equations, 2016, 260, 84-114. doi: 10.1016/j.jde.2015.08.047

    CrossRef Google Scholar

    [25] H. Zou, On global existence of solutions for the Gierer-Meinhardt system, Discrete Contin. Dyn. Syst., 2015, 35(1), 583-591. doi: 10.3934/dcds.2015.35.583

    CrossRef Google Scholar

Article Metrics

Article views(2517) PDF downloads(362) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint