[1]
|
P. Amster, Multiple solutions for an elliptic system with indefinite Robin boundary conditions, Adv. Nonlinear Anal., 2019, 8(1), 603-614.
Google Scholar
|
[2]
|
K. Antwi-Fordjour and M. Nkashama, Global Existence of Solutions of the Gierer-Meinhardt System with Mixed Boundary Conditions, Appl. Math., 2017, 8(6), 857-867. doi: 10.4236/am.2017.86067
CrossRef Google Scholar
|
[3]
|
P. Billingsley, Convergence of probability measures, Wiley-Interscience publication, 1999.
Google Scholar
|
[4]
|
S. Chen, Y. Salmaniw and R. Xu, Global existence for a singular Gierer-Meinhardt system, J. Differential Equations, 2017, 262, 2940-2690. doi: 10.1016/j.jde.2016.11.022
CrossRef Google Scholar
|
[5]
|
R. Dillon, P. K. Maini and H. G. Othmer, Pattern formation in generalized Turing systems. Ⅰ. Steady-state patterns in systems with mixed boundary conditions, J. Math. Biology, 1994, 32, 345-393. doi: 10.1007/BF00160165
CrossRef Google Scholar
|
[6]
|
R. Durrett, Probability: theory and example, forth editions, Cambridge University Press, 2010.
Google Scholar
|
[7]
|
A. Friedman, Partial Differential Equations, Holt-Reinhart-Winston, 1969.
Google Scholar
|
[8]
|
A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin), 1972, 12, 30-39. doi: 10.1007/BF00289234
CrossRef Google Scholar
|
[9]
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, New York, 1981.
Google Scholar
|
[10]
|
H. Jiang, Global existence of solutions of an activator-inhibitor systems, Discrete Contin. Dyn. Syst., 2006, 14(4), 737-751. doi: 10.3934/dcds.2006.14.737
CrossRef Google Scholar
|
[11]
|
J. P. Keener, Activators and inhibitors in pattern formation, Stu. Appl. Math., 1978, 59, 1-23. doi: 10.1002/sapm19785911
CrossRef Google Scholar
|
[12]
|
J. Kelkel and C. Surulescu, On a stochastic reaction-diffusion system modeling pattern formation on seashells, J. Math. Biology, 2010, 60, 765-796. doi: 10.1007/s00285-009-0284-5
CrossRef Google Scholar
|
[13]
|
F. Li and W. Ni, On the global existence and finite time blow-up of shadow systems, J. Differential Equations, 2009, 247(6), 1762-1776. doi: 10.1016/j.jde.2009.04.009
CrossRef Google Scholar
|
[14]
|
F. Li and L. Xu, Finite time blowup of the stochastic shadow Gierer-Meinhardt systmem, Electronic communications in probability, 2015, 20(65), 13.
Google Scholar
|
[15]
|
P. K. Maini, J. Wei and M. Winter, Stability of spikes in the shadow Gierer-Meinhardt system with Robin boundary conditions, Chaos 2007, 17(3):037106. doi: 10.1063/1.2768156
CrossRef Google Scholar
|
[16]
|
K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math., 1987, 4(1), 47-58. doi: 10.1007/BF03167754
CrossRef Google Scholar
|
[17]
|
T. Miura and P. K. Maini, Periodic pattern formation in reaction-diffusion systems: An introduction for numerical simulation, Anatomical Science International, 2004, 79, 112-123. doi: 10.1111/j.1447-073x.2004.00079.x
CrossRef Google Scholar
|
[18]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Science, 44, Springer-Verlag, New York, 1983.
Google Scholar
|
[19]
|
T. Phan, A remark on global existence of solutions of shadow systems, Z. Angew. Math.Phys., 2012, 63(2), 395-400. doi: 10.1007/s00033-011-0149-9
CrossRef Google Scholar
|
[20]
|
S. Resnick, Adventures in stochastic processes, Birkhuser Boston, Inc., 1992.
Google Scholar
|
[21]
|
F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math., 1072, Springer- Verlag, New York, 1984.
Google Scholar
|
[22]
|
A. Trembley, Memoires pour servir a l'histoire d'un genre de polypes d'eau douce, a bras en forme de cornes, A Leide : Chez Jean & Herman Verbeek, 1744.
Google Scholar
|
[23]
|
A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond., 1952, B 237, 37-72.
Google Scholar
|
[24]
|
M. Winter, L. Xu, J. Zhai and T. Zhang, The dynamics of the stochastic shadow Gierer-Meinhardt system, Journal of Differential Equations, 2016, 260, 84-114. doi: 10.1016/j.jde.2015.08.047
CrossRef Google Scholar
|
[25]
|
H. Zou, On global existence of solutions for the Gierer-Meinhardt system, Discrete Contin. Dyn. Syst., 2015, 35(1), 583-591. doi: 10.3934/dcds.2015.35.583
CrossRef Google Scholar
|