2020 Volume 10 Issue 5
Article Contents

Anass Bouchriti, Morgan Pierre, Nour Eddine Alaa. REMARKS ON THE ASYMPTOTIC BEHAVIOR OF SCALAR AUXILIARY VARIABLE (SAV) SCHEMES FOR GRADIENT-LIKE FLOWS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2198-2219. doi: 10.11948/20190373
Citation: Anass Bouchriti, Morgan Pierre, Nour Eddine Alaa. REMARKS ON THE ASYMPTOTIC BEHAVIOR OF SCALAR AUXILIARY VARIABLE (SAV) SCHEMES FOR GRADIENT-LIKE FLOWS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2198-2219. doi: 10.11948/20190373

REMARKS ON THE ASYMPTOTIC BEHAVIOR OF SCALAR AUXILIARY VARIABLE (SAV) SCHEMES FOR GRADIENT-LIKE FLOWS

  • We introduce a time semi-discretization of a damped wave equation by a SAV scheme with second order accuracy. The energy dissipation law is shown to hold without any restriction on the time step. We prove that any sequence generated by the scheme converges to a steady state (up to a subsequence). We notice that the steady state equation associated to the SAV scheme is a modified version of the steady state equation associated to the damped wave equation. We show that a similar result holds for a SAV fully discrete version of the Cahn-Hilliard equation and we compare numerically the two steady state equations.
    MSC: 65M06, 65M60, 35B40
  • 加载中
  • [1] N. E. Alaa and M. Pierre, Convergence to equilibrium for discretized gradient-like systems with analytic features, IMA J. Numer. Anal., 2013, 33(4), 1291-1321. doi: 10.1093/imanum/drs042

    CrossRef Google Scholar

    [2] S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsing, Acta. Metall., 1979, 27, 1084-1095. doi: 10.1016/0001-6160(79)90196-2

    CrossRef Google Scholar

    [3] P. F. Antonietti, B. Merlet, M. Pierre and M. Verani, Convergence to equilibrium for a second-order time semi-discretization of the Cahn-Hilliard equation, AIMS Mathematics, 2016, 1(3), 178-194. doi: 10.3934/Math.2016.3.178

    CrossRef Google Scholar

    [4] S. Badia, F. Guillén-González and J. V. Gutiérrez-Santacreu, Finite element approximation of nematic liquid crystal flows using a saddle-point structure, J. Comput. Physics, 2011, 230, 1686-1706. doi: 10.1016/j.jcp.2010.11.033

    CrossRef Google Scholar

    [5] A. Bouchriti, M. Pierre and N. E. Alaa, Gradient stability of high-order BDF methods and some applications, J. Difference Equ. Appl., 2020, 0(0), 1-30.

    Google Scholar

    [6] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 1958, 28, 258-267. doi: 10.1063/1.1744102

    CrossRef Google Scholar

    [7] Q. Cheng, J. Shen and X. Yang, Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach, J. Sci. Comput., 2019, 78(3), 1467-1487. doi: 10.1007/s10915-018-0832-5

    CrossRef Google Scholar

    [8] K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth, Phys. Rev. Lett., 2002, 88, 245701. doi: 10.1103/PhysRevLett.88.245701

    CrossRef Google Scholar

    [9] A. Ern and J. L. Guermond, Theory and practice of finite elements, 159 of Applied Mathematical Sciences, Springer-Verlag, New York, 2004.

    Google Scholar

    [10] S. Gatti, M. Grasselli, A. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 2006, 134(1), 117-127.

    Google Scholar

    [11] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

    Google Scholar

    [12] H. Gomez and T. J. R. Hughes, Provably unconditionally stable, second order time-accurate, mixed variational methods for phase-field models, J. Comput. Phys., 2011, 230(13), 5310-5327. doi: 10.1016/j.jcp.2011.03.033

    CrossRef Google Scholar

    [13] O. Goubet, Remarks on some dissipative sine-Gordon equations, Complex Var. Elliptic Equ., 2019, 0(0), 1-7.

    Google Scholar

    [14] M. Grasselli and M. Pierre, Energy stable and convergent finite element schemes for the modified phase field crystal equation, ESAIM Math. Model. Numer. Anal., 2016, 50(5), 1523-1560. doi: 10.1051/m2an/2015092

    CrossRef Google Scholar

    [15] F. Guillén-González and G. Tierra, On linear schemes for a Cahn-Hilliard diffuse interface model, J. Comput. Physics, 2013, 234, 140-171. doi: 10.1016/j.jcp.2012.09.020

    CrossRef Google Scholar

    [16] A. Haraux, Systèmes dynamiques dissipatifs et applications, 17 of Recherches en Mathématiques Appliquées, Masson, Paris, 1991.

    Google Scholar

    [17] A. Haraux and M. A. Jendoubi, The convergence problem for dissipative autonomous systems, SpringerBriefs in Mathematics, Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2015.

    Google Scholar

    [18] C. Jiang, W. Cai and Y. Wang, A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach, J. Sci. Comput., 2019, 80(3), 1629-1655. doi: 10.1007/s10915-019-01001-5

    CrossRef Google Scholar

    [19] M. D. Johnson, C. Orme, A. W. Hunt et al., Stable and unstable growth in molecular beam epitaxy, Phys. Rev. Lett., 1994, 72, 116-119. doi: 10.1103/PhysRevLett.72.116

    CrossRef Google Scholar

    [20] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, 13 of Mathématiques & Applications (Berlin), Springer-Verlag, Paris, 1993.

    Google Scholar

    [21] H. Khalfi, M. Pierre, N. E. Alaa and M. Guedda, Convergence to equilibrium of a DC algorithm for an epitaxial growth model, Int. J. Numer. Anal. Model., 2019, 16(3), 398-411.

    Google Scholar

    [22] H. Kielhöfer, Bifurcation theory, 156 of Applied Mathematical Sciences, 2nd Edn, Springer, New York, 2012.

    Google Scholar

    [23] Q. Li, L. Mei, X. Yang and Y. Li, Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation, Adv. Comput. Math., 2019, 45(3), 1551-1580. doi: 10.1007/s10444-019-09678-w

    CrossRef Google Scholar

    [24] X. Li, J. Shen and H. Rui, Energy stability and convergence of SAV block-centered finite difference method for gradient flows, Math. Comp., 2019, 88(319), 2047-2068. doi: 10.1090/mcom/3428

    CrossRef Google Scholar

    [25] Z. Liu and X. Li, Efficient modified techniques of invariant energy quadratization approach for gradient flows, Appl. Math. Lett., 2019, 98, 206-214. doi: 10.1016/j.aml.2019.06.006

    CrossRef Google Scholar

    [26] M. Pierre and P. Rogeon, Convergence to equilibrium for a time semi-discrete damped wave equation, J. Appl. Anal. Comput., 2016, 6(4), 1041-1048.

    Google Scholar

    [27] J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal., 2018, 56(5), 2895-2912. doi: 10.1137/17M1159968

    CrossRef Google Scholar

    [28] J. Shen, J. Xu and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 2018, 353, 407-416. doi: 10.1016/j.jcp.2017.10.021

    CrossRef Google Scholar

    [29] J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 2010, 28(4), 1669-1691. doi: 10.3934/dcds.2010.28.1669

    CrossRef Google Scholar

    [30] S. Sun, X. Jing and Q. Wang, Error estimates of energy stable numerical schemes for Allen-Cahn equations with nonlocal constraints, J. Sci. Comput., 2018, 79, 593-623.

    Google Scholar

    [31] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, 68 of Applied Mathematical Sciences, 2nd Edn, Springer-Verlag, New York, 1997.

    Google Scholar

    [32] G. Tierra and F. Guillén-González, Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models, Arch. Comput. Methods Eng., 2015, 22(2), 269-289. doi: 10.1007/s11831-014-9112-1

    CrossRef Google Scholar

    [33] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Physics, 2016, 327, 294-316. doi: 10.1016/j.jcp.2016.09.029

    CrossRef Google Scholar

    [34] S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 2004, 3(4), 921-934. doi: 10.3934/cpaa.2004.3.921

    CrossRef Google Scholar

Figures(2)  /  Tables(1)

Article Metrics

Article views(2679) PDF downloads(492) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint