2020 Volume 10 Issue 5
Article Contents

Bing Tan, Zheng Zhou, Xiaolong Qin. ACCELERATED PROJECTION-BASED FORWARD-BACKWARD SPLITTING ALGORITHMS FOR MONOTONE INCLUSION PROBLEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2184-2197. doi: 10.11948/20190363
Citation: Bing Tan, Zheng Zhou, Xiaolong Qin. ACCELERATED PROJECTION-BASED FORWARD-BACKWARD SPLITTING ALGORITHMS FOR MONOTONE INCLUSION PROBLEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2184-2197. doi: 10.11948/20190363

ACCELERATED PROJECTION-BASED FORWARD-BACKWARD SPLITTING ALGORITHMS FOR MONOTONE INCLUSION PROBLEMS

  • Corresponding author: Xiaolong Qin. Email address: qxlxajh@163.com (X. Qin)
  • In this paper, based on inertial and Tseng's ideas, we propose two projection-based algorithms to solve a monotone inclusion problem in infinite dimensional Hilbert spaces. Solution theorems of strong convergence are obtained under the certain conditions. Some numerical experiments are presented to illustrate that our algorithms are efficient than the existing results.
    MSC: 47H05, 49J40, 65K10, 47J20
  • 加载中
  • [1] Q.H. Ansari, M. Islam and J.C. Yao, Nonsmooth variational inequalities on Hadamard manifolds, Appl. Anal., 2020, 99, 340-358. doi: 10.1080/00036811.2018.1495329

    CrossRef Google Scholar

    [2] H. Attouch, X. Goudou and P. Redont, The heavy ball with friction method, I. the continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math., 2000, 2(1), 1-34. doi: 10.1142/S0219199700000025

    CrossRef Google Scholar

    [3] H. Attouch and J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than $1/{k^2}$, SIAM J. Optim., 2016, 26(3), 1824-1834. doi: 10.1137/15M1046095

    CrossRef $1/{k^2}$" target="_blank">Google Scholar

    [4] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Elsevier, North Holland, 1973.

    Google Scholar

    [5] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2009, 2(1), 183-202. doi: 10.1137/080716542

    CrossRef Google Scholar

    [6] T.H. Cuong, J.C. Yao and N.D. Yen, Qualitative properties of the minimum sum-of-squares clustering problem, Optimization, (2020), 10.1080/02331934. 2020.1778685.

    Google Scholar

    [7] G. Chen and R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim., 1997, 7(2), 421-444. doi: 10.1137/S1052623495290179

    CrossRef Google Scholar

    [8] S.Y. Cho and S.M. Kang, Approximation of common solutions of variational inequalities via strict pseudocontractions, Acta Math. Sci. 2012, 32, 1607-1618. doi: 10.1016/S0252-9602(12)60127-1

    CrossRef Google Scholar

    [9] S.Y. Cho, W. Li and S.M. Kang, Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., 2013, 2013, Article ID 199.

    Google Scholar

    [10] S. Y. Cho, Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., 2018, 8(1), 19-31.

    Google Scholar

    [11] D. Gabay, Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems, Elsevier, North Holland, 2000.

    Google Scholar

    [12] A. Gibali and D.V. Thong, Tseng type methods for solving inclusion problems and its applications, Calcolo, 2018, 55(4), 49. doi: 10.1007/s10092-018-0292-1

    CrossRef Google Scholar

    [13] T. H. Kim and H. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., 2006, 64(5), 1140-1152. doi: 10.1016/j.na.2005.05.059

    CrossRef Google Scholar

    [14] L. Liu, A hybrid steepest descent method for solving split feasibility problems involving nonexpansive mappings, J. Nonlinear Convex Anal., 2019, 20(3), 471-481.

    Google Scholar

    [15] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 1979, 16(6), 964-979. doi: 10.1137/0716071

    CrossRef Google Scholar

    [16] D. A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 2015, 51(2), 311-325. doi: 10.1007/s10851-014-0523-2

    CrossRef Google Scholar

    [17] C. Martinez-Yanes and H. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 2006, 64(11), 2400-2411. doi: 10.1016/j.na.2005.08.018

    CrossRef Google Scholar

    [18] Y. Nesterov, A method for solving the convex programming problem with convergence rate $O(1/k.{2})$, Dokl. Akad. Aauk SSSR, 1983, 269, 543-547.

    $O(1/k.{2})$" target="_blank">Google Scholar

    [19] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 2003, 279(2), 372-379. doi: 10.1016/S0022-247X(02)00458-4

    CrossRef Google Scholar

    [20] G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 1979, 72(2), 383-390. doi: 10.1016/0022-247X(79)90234-8

    CrossRef Google Scholar

    [21] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Comput. Math. Math. Phys., 1964, 4(5), 1-17. doi: 10.1016/0041-5553(64)90137-5

    CrossRef Google Scholar

    [22] D.R. Sahu, J.C. Yao, M. Verma and K.K. Shukla, Convergence rate analysis of proximal gradient methods with applications to composite minimization problems, Optimization, (2020), 10.1080/02331934.2019.1702040

    Google Scholar

    [23] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 2000, 38(2), 431-446. doi: 10.1137/S0363012998338806

    CrossRef Google Scholar

    [24] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 2008, 341(1), 276-286. doi: 10.1016/j.jmaa.2007.09.062

    CrossRef Google Scholar

    [25] W. Takahahsi and J.C. Yao, The split common fixed point problem for two finite families of nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal., 2019, 20, 173-195.

    Google Scholar

    [26] X. Zhao, K.F. Ng, C. Li and J.C. Yao, Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems, Appl. Math. Optim., 2018, 78, 613-641. doi: 10.1007/s00245-017-9417-1

    CrossRef Google Scholar

Figures(4)  /  Tables(2)

Article Metrics

Article views(3354) PDF downloads(510) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint