[1]
|
Q.H. Ansari, M. Islam and J.C. Yao, Nonsmooth variational inequalities on Hadamard manifolds, Appl. Anal., 2020, 99, 340-358. doi: 10.1080/00036811.2018.1495329
CrossRef Google Scholar
|
[2]
|
H. Attouch, X. Goudou and P. Redont, The heavy ball with friction method, I. the continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math., 2000, 2(1), 1-34. doi: 10.1142/S0219199700000025
CrossRef Google Scholar
|
[3]
|
H. Attouch and J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than $1/{k^2}$, SIAM J. Optim., 2016, 26(3), 1824-1834. doi: 10.1137/15M1046095
CrossRef $1/{k^2}$" target="_blank">Google Scholar
|
[4]
|
H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Elsevier, North Holland, 1973.
Google Scholar
|
[5]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2009, 2(1), 183-202. doi: 10.1137/080716542
CrossRef Google Scholar
|
[6]
|
T.H. Cuong, J.C. Yao and N.D. Yen, Qualitative properties of the minimum sum-of-squares clustering problem, Optimization, (2020), 10.1080/02331934. 2020.1778685.
Google Scholar
|
[7]
|
G. Chen and R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim., 1997, 7(2), 421-444. doi: 10.1137/S1052623495290179
CrossRef Google Scholar
|
[8]
|
S.Y. Cho and S.M. Kang, Approximation of common solutions of variational inequalities via strict pseudocontractions, Acta Math. Sci. 2012, 32, 1607-1618. doi: 10.1016/S0252-9602(12)60127-1
CrossRef Google Scholar
|
[9]
|
S.Y. Cho, W. Li and S.M. Kang, Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., 2013, 2013, Article ID 199.
Google Scholar
|
[10]
|
S. Y. Cho, Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., 2018, 8(1), 19-31.
Google Scholar
|
[11]
|
D. Gabay, Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems, Elsevier, North Holland, 2000.
Google Scholar
|
[12]
|
A. Gibali and D.V. Thong, Tseng type methods for solving inclusion problems and its applications, Calcolo, 2018, 55(4), 49. doi: 10.1007/s10092-018-0292-1
CrossRef Google Scholar
|
[13]
|
T. H. Kim and H. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., 2006, 64(5), 1140-1152. doi: 10.1016/j.na.2005.05.059
CrossRef Google Scholar
|
[14]
|
L. Liu, A hybrid steepest descent method for solving split feasibility problems involving nonexpansive mappings, J. Nonlinear Convex Anal., 2019, 20(3), 471-481.
Google Scholar
|
[15]
|
P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 1979, 16(6), 964-979. doi: 10.1137/0716071
CrossRef Google Scholar
|
[16]
|
D. A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 2015, 51(2), 311-325. doi: 10.1007/s10851-014-0523-2
CrossRef Google Scholar
|
[17]
|
C. Martinez-Yanes and H. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 2006, 64(11), 2400-2411. doi: 10.1016/j.na.2005.08.018
CrossRef Google Scholar
|
[18]
|
Y. Nesterov, A method for solving the convex programming problem with convergence rate $O(1/k.{2})$, Dokl. Akad. Aauk SSSR, 1983, 269, 543-547.
$O(1/k.{2})$" target="_blank">Google Scholar
|
[19]
|
K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 2003, 279(2), 372-379. doi: 10.1016/S0022-247X(02)00458-4
CrossRef Google Scholar
|
[20]
|
G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 1979, 72(2), 383-390. doi: 10.1016/0022-247X(79)90234-8
CrossRef Google Scholar
|
[21]
|
B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Comput. Math. Math. Phys., 1964, 4(5), 1-17. doi: 10.1016/0041-5553(64)90137-5
CrossRef Google Scholar
|
[22]
|
D.R. Sahu, J.C. Yao, M. Verma and K.K. Shukla, Convergence rate analysis of proximal gradient methods with applications to composite minimization problems, Optimization, (2020), 10.1080/02331934.2019.1702040
Google Scholar
|
[23]
|
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 2000, 38(2), 431-446. doi: 10.1137/S0363012998338806
CrossRef Google Scholar
|
[24]
|
W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 2008, 341(1), 276-286. doi: 10.1016/j.jmaa.2007.09.062
CrossRef Google Scholar
|
[25]
|
W. Takahahsi and J.C. Yao, The split common fixed point problem for two finite families of nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal., 2019, 20, 173-195.
Google Scholar
|
[26]
|
X. Zhao, K.F. Ng, C. Li and J.C. Yao, Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems, Appl. Math. Optim., 2018, 78, 613-641. doi: 10.1007/s00245-017-9417-1
CrossRef Google Scholar
|