[1]
|
M. J. Ablowitz, M. A. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge 1991, 149.
Google Scholar
|
[2]
|
G. Bluman and S. Anco, Symmetry and integration Methods for Differential Equations, Applied Mathematical Sciences, 2002, 154.
Google Scholar
|
[3]
|
D. E. Baldwin and W. Hereman, A symbolic algorithm for computing recursion operators of nonlinear partial differential equations, International Journal of Computer Mathematics, 2010, 87(5), 1094-1119. doi: 10.1080/00207160903111592
CrossRef Google Scholar
|
[4]
|
L. Castellani, R. D'Auria and P. Fre, Supergravity and Superstrings. A Geometric Perspective, World Scientific, Singapore, 1991.
Google Scholar
|
[5]
|
R. P. Delong, Killing tensors and the Hamilton-Jacobi equation, PhD thesis, Univ of Minnesota, 1982.
Google Scholar
|
[6]
|
A. S. Fokas and P. M. Santini, Recursion operators and bi-Hamiltonian structures in multidimensions, Communications in Mathematical Physics, 1988, 115(3), 375-419. doi: 10.1007/BF01218017
CrossRef Google Scholar
|
[7]
|
G. Giorgio, C. Scimiterna and D Levi, Journal of Mathematical Physics, 2017, 58(5).
Google Scholar
|
[8]
|
R. N. Garifullin, G. Gubbiotti and R. I. Yamilov, Integrable discrete autonomous quad-equations admitting, as generalized symmetries, known five-point differential-difference equations, Journal of Nonlinear Mathematical Physics, 2019, 26(3), 333-357. doi: 10.1080/14029251.2019.1613050
CrossRef Google Scholar
|
[9]
|
A. Graeme, Recursion operators and non-local symmetries, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1994.
Google Scholar
|
[10]
|
N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Dordrecht, 1985, 3.
Google Scholar
|
[11]
|
S. Jamal and A. Mathebula, Generalized symmetries and recursive operators of some diffusive equations, Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(2), 697-706. doi: 10.1007/s40840-017-0510-z
CrossRef Google Scholar
|
[12]
|
R. S. Khamitova, Group structure and the basis of conservation laws, Theor. and Math. Phys., 1982, 52(2), 244-251.
Google Scholar
|
[13]
|
A. H. Kara and F. Mahomed, A basis of conservation laws for partial differential equations, J Nonlin. Math. Phys., 2002, 9(2), 60-72.
Google Scholar
|
[14]
|
A. H. Kara and F. Mahomed, The relationship between symmetries and conservation laws, Int. J. Theor. Phys., 2000, 39(1), 23-40. doi: 10.1023/A:1003686831523
CrossRef Google Scholar
|
[15]
|
C. Muriel, J. L. Romero and A. Ruiz, The Calculation and Use of Generalized Symmetries for Second-Order Ordinary Differential Equations, In Symmetries, Differential Equations and Applications, 2018, 137-158.
Google Scholar
|
[16]
|
W. Miller, Symmetry and separation of variables, Addison-Wesley, 1977.
Google Scholar
|
[17]
|
P. Olver, Application of Lie Groups to Differential Equations, Springer, New York, 1993.
Google Scholar
|
[18]
|
R. O. Popovych and N. M. Ivanova, Hierarchy of conservation laws of diffusion equation-convection equations, J Math. Phys., 2005, 46(4), 043502.
Google Scholar
|
[19]
|
A. Sergyeyev, A simple construction of recursion operators for multidimensional dispersionless integrable systems, Journal of Mathematical Analysis and Applications, 2017, 454(2), 468-480. doi: 10.1016/j.jmaa.2017.04.050
CrossRef Google Scholar
|
[20]
|
A. V. Shapovalov and I. V. Shirokov, Symmetry algebras of linear differential equations, Theor. Math. Phys., 1992, 92(1), 697-703. doi: 10.1007/BF01018697
CrossRef Google Scholar
|
[21]
|
G. Wang, Y. Liu, S. Han, H. Wang and X. Su, Generalized Symmetries and mCK Method Analysis of the (21)-Dimensional Coupled Burgers Equations, Symmetry, 2019, 11(12), 1473. doi: 10.3390/sym11121473
CrossRef Google Scholar
|