[1]
|
H. I. Abdel-Gawad, M. Tantawy and M.S. Osman, Dynamic of DNA's possible impact on its damage, Mathematical Methods in the Applied Sciences, 2016, 39(2), 168-176. doi: 10.1002/mma.3466
CrossRef Google Scholar
|
[2]
|
M. N. Ali, S. Ali, S. M. Husnine and T. Ak, Nonlinear self-adjointness and conservation laws of KdV equation with linear damping force, Applied Mathematics & Information Sciences Letters, 2017, 5(3), 89-94.
Google Scholar
|
[3]
|
M. N. Ali, A. R. Seadawy, S. M. Husnine and K.U. Tariq, Optical pulse propagation in monomode fibers with higher order nonlinear Schrödinger equation, Optik, 2018, 156, 356-364. doi: 10.1016/j.ijleo.2017.11.009
CrossRef Google Scholar
|
[4]
|
M. N. Ali, S. M. Husnine, S. Noor and A. Tuna, Exact solutions of (n+1)-dimensional space-time fractional Zakharov-Kuznetsov equation, Hittite Journal of Science and Engineering, 2018, 5(3), 179-183.
Google Scholar
|
[5]
|
M. N. Ali, S. M. Husnine, T. Ak and A. Atangana, Solitary wave solution and conservation laws of higher dimensional Zakharov-Kuznetsov equation with nonlinear self-adjointness, Mathematical Methods in the Applied Sciences, 2018, 41, 6611-6624. doi: 10.1002/mma.5180
CrossRef Google Scholar
|
[6]
|
M. N. Ali, S. M. Husnine, A. Saha, S. K. Bhowmik, S. Dhawan and T. Ak, Exact solutions, conservation laws, bifurcation of nonlinear and supernonlinear traveling waves for Sharma-Tasso-Olver equation, Nonlinear Dynamics, 2018, 94, 1791-1801. doi: 10.1007/s11071-018-4457-x
CrossRef Google Scholar
|
[7]
|
M. N. Ali, A. R. Seadawy and S. M. Husnine, Lie point symmetries, conservation laws and exact solutions of $(1+n)$-dimensional modified Zakharov-Kuznetsov equation describing the waves in plasma physics, Pramana-Journal of Physics, 2018, 8, 1054-1060.
Google Scholar
|
[8]
|
S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part Ⅰ : Examples of conservation law classifications, European Journal of Applied Mathematics, 2002, 13(5), 545-566. doi: 10.1017/S095679250100465X
CrossRef Google Scholar
|
[9]
|
I. M. Anderson and J. Pohjanpelto, The cohomology of invariant variational bicomplexes, Acta Applicandae Mathematicae, 1995, 41, 3-19. doi: 10.1007/BF00996103
CrossRef Google Scholar
|
[10]
|
M. S. Bruzón, E. Recio, R. de la Rosa and M. L. Gandarias, Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation, Mathematical Methods in the Applied Sciences, 2018, 41(4), 1631-1641. doi: 10.1002/mma.4690
CrossRef Google Scholar
|
[11]
|
B. Feng and T. Mitsui, A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations, Journal of Computational and Applied Mathematics, 1998, 90(1), 95-116.
Google Scholar
|
[12]
|
N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Volume Ⅰ : Symmetries, Exact Solutions, and Conservation Laws, CRC Press, Boca Raton, 1993.
Google Scholar
|
[13]
|
M. Inc, A. I. Aliyu, A. Yusuf and D. Baleanu, Optical solitons for Biswas-Milovic model in nonlinear optics by Sine-Gordon equation method, Optik-International Journal for Light and Electron Optics, 2018, 157, 267-274. doi: 10.1016/j.ijleo.2017.11.061
CrossRef Google Scholar
|
[14]
|
E. Noether, Invariant and variation problems, Transport Theory and Statistical Physics, 1971, 1(3), 186-207. doi: 10.1080/00411457108231446
CrossRef Google Scholar
|
[15]
|
P. Olver, Application of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.
Google Scholar
|
[16]
|
M. S. Osman, Analytical study of rational and double-soliton rational solutions governed by the KdV-Sawada-Kotera-Ramani equation with variable coefficients, Nonlinear Dynamics, 2017, 89(3), 2283-2289. doi: 10.1007/s11071-017-3586-y
CrossRef Google Scholar
|
[17]
|
M. S. Osman and J.A. Machado, The dynamical behavior of mixed-type soliton solutions described by (2+1)-dimensional Bogoyavlensky-Konopelchenko equation with variable coefficients, Journal of Electromagnetic Waves and Applications, 2018, 32(11), 1457-1464. doi: 10.1080/09205071.2018.1445039
CrossRef Google Scholar
|
[18]
|
M. S. Osman, J.A.T Machado and D. Baleanu, On nonautonomous complex wave solutions described by the coupled Schrödinger-Boussinesq equation with variable-coefficients, Optical and Quantum Electronics, 2018, 50(2), 73. doi: 10.1007/s11082-018-1346-y
CrossRef Google Scholar
|
[19]
|
M. S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami and Q. Zhou, The unified method for conformable time fractional Schrödinger equation with perturbation terms, Chinese Journal of Physics, 2018, 56(5), 2500-2506. doi: 10.1016/j.cjph.2018.06.009
CrossRef Google Scholar
|
[20]
|
P. M. Prenter, Splines and Variational Methods, John Wiley, New York, 1975.
Google Scholar
|
[21]
|
M. Randrüüt, On the Kudryashov-Sinelshchikov equation for waves in bubbly liquids, Physics Letters A, 2011, 375(42), 3687-3692. doi: 10.1016/j.physleta.2011.08.048
CrossRef Google Scholar
|
[22]
|
H. Stephani, Differential Equations: Their Solution Using Symmetries, Cambridge University Press, Cambridge, 1989.
Google Scholar
|
[23]
|
H. Triki, T. Ak, S. P. Moshokoa and A. Biswas, Soliton solutions to KdV equation with spatio-temporal dispersion, Ocean Engineering, 2018, 91, 48.
Google Scholar
|
[24]
|
M. Vlieg-Hulstman, The Painlevé analysis and exact travelling wave solutions to nonlinear partial differential equations, Mathematical and Computer Modelling, 1993, 18(10), 151-156. doi: 10.1016/0895-7177(93)90224-M
CrossRef Google Scholar
|
[25]
|
A. M. Wazwaz, The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations, Computers & Mathematics with Applications, 2007, 54(7-8), 926-932.
Google Scholar
|
[26]
|
A. M. Wazwaz, The Hirota's bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation, Applied Mathematics and Computation, 2008, 200(1), 160-166. doi: 10.1016/j.amc.2007.11.001
CrossRef Google Scholar
|
[27]
|
H. Wu, On Bäklund transformations for nonlinear partial differential equations, Journal of Mathematical Analysis and Applications, 1995, 192(1), 151-179. doi: 10.1006/jmaa.1995.1165
CrossRef Google Scholar
|
[28]
|
H. Yang, Symmetry reductions and exact solutions to the Kudryashov-Sinelshchikov equation, Zeitschrift für Naturforschung A, 2016, 71(11)a, 1059-1065. doi: 10.1515/zna-2016-0212
CrossRef Google Scholar
|
[29]
|
V. E. Zakharov and A.B. Shabat, Interaction between solitons in a stable medium, Soviet Physics-Journal of Experimental and Theoretical Physics, 1973, 37(5), 823-828.
Google Scholar
|
[30]
|
S. Zhang and S. Hong, Variable separation method for a nonlinear time fractional partial differential equation with forcing term, Journal of Computational and Applied Mathematics, 2018, 339, 297-305. doi: 10.1016/j.cam.2017.09.045
CrossRef Google Scholar
|