2020 Volume 10 Issue 5
Article Contents

Turgut Ak, Mohammed S. Osman, Abdul Hamid Kara. POLYNOMIAL AND RATIONAL WAVE SOLUTIONS OF KUDRYASHOV-SINELSHCHIKOV EQUATION AND NUMERICAL SIMULATIONS FOR ITS DYNAMIC MOTIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2145-2162. doi: 10.11948/20190341
Citation: Turgut Ak, Mohammed S. Osman, Abdul Hamid Kara. POLYNOMIAL AND RATIONAL WAVE SOLUTIONS OF KUDRYASHOV-SINELSHCHIKOV EQUATION AND NUMERICAL SIMULATIONS FOR ITS DYNAMIC MOTIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2145-2162. doi: 10.11948/20190341

POLYNOMIAL AND RATIONAL WAVE SOLUTIONS OF KUDRYASHOV-SINELSHCHIKOV EQUATION AND NUMERICAL SIMULATIONS FOR ITS DYNAMIC MOTIONS

  • Polynomial and rational wave solutions of Kudryashov-Sinelshchikov equation and numerical simulations for its dynamic motions are investigated. Conservation flows of the dynamic motion are obtained utilizing multiplier approach. Using the unified method, a collection of exact solitary and soliton solutions of Kudryashov-Sinelshchikov equation is presented. Collocation finite element method based on quintic B-spline functions is implemented to the equation to evidence the accuracy of the proposed method by test problems. Stability analysis of the numerical scheme is studied by employing von Neumann theory. The obtained analytical and numerical results are in good agreement.
    MSC: 35A20, 76M10, 65L60
  • 加载中
  • [1] H. I. Abdel-Gawad, M. Tantawy and M.S. Osman, Dynamic of DNA's possible impact on its damage, Mathematical Methods in the Applied Sciences, 2016, 39(2), 168-176. doi: 10.1002/mma.3466

    CrossRef Google Scholar

    [2] M. N. Ali, S. Ali, S. M. Husnine and T. Ak, Nonlinear self-adjointness and conservation laws of KdV equation with linear damping force, Applied Mathematics & Information Sciences Letters, 2017, 5(3), 89-94.

    Google Scholar

    [3] M. N. Ali, A. R. Seadawy, S. M. Husnine and K.U. Tariq, Optical pulse propagation in monomode fibers with higher order nonlinear Schrödinger equation, Optik, 2018, 156, 356-364. doi: 10.1016/j.ijleo.2017.11.009

    CrossRef Google Scholar

    [4] M. N. Ali, S. M. Husnine, S. Noor and A. Tuna, Exact solutions of (n+1)-dimensional space-time fractional Zakharov-Kuznetsov equation, Hittite Journal of Science and Engineering, 2018, 5(3), 179-183.

    Google Scholar

    [5] M. N. Ali, S. M. Husnine, T. Ak and A. Atangana, Solitary wave solution and conservation laws of higher dimensional Zakharov-Kuznetsov equation with nonlinear self-adjointness, Mathematical Methods in the Applied Sciences, 2018, 41, 6611-6624. doi: 10.1002/mma.5180

    CrossRef Google Scholar

    [6] M. N. Ali, S. M. Husnine, A. Saha, S. K. Bhowmik, S. Dhawan and T. Ak, Exact solutions, conservation laws, bifurcation of nonlinear and supernonlinear traveling waves for Sharma-Tasso-Olver equation, Nonlinear Dynamics, 2018, 94, 1791-1801. doi: 10.1007/s11071-018-4457-x

    CrossRef Google Scholar

    [7] M. N. Ali, A. R. Seadawy and S. M. Husnine, Lie point symmetries, conservation laws and exact solutions of $(1+n)$-dimensional modified Zakharov-Kuznetsov equation describing the waves in plasma physics, Pramana-Journal of Physics, 2018, 8, 1054-1060.

    Google Scholar

    [8] S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part Ⅰ : Examples of conservation law classifications, European Journal of Applied Mathematics, 2002, 13(5), 545-566. doi: 10.1017/S095679250100465X

    CrossRef Google Scholar

    [9] I. M. Anderson and J. Pohjanpelto, The cohomology of invariant variational bicomplexes, Acta Applicandae Mathematicae, 1995, 41, 3-19. doi: 10.1007/BF00996103

    CrossRef Google Scholar

    [10] M. S. Bruzón, E. Recio, R. de la Rosa and M. L. Gandarias, Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation, Mathematical Methods in the Applied Sciences, 2018, 41(4), 1631-1641. doi: 10.1002/mma.4690

    CrossRef Google Scholar

    [11] B. Feng and T. Mitsui, A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations, Journal of Computational and Applied Mathematics, 1998, 90(1), 95-116.

    Google Scholar

    [12] N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Volume Ⅰ : Symmetries, Exact Solutions, and Conservation Laws, CRC Press, Boca Raton, 1993.

    Google Scholar

    [13] M. Inc, A. I. Aliyu, A. Yusuf and D. Baleanu, Optical solitons for Biswas-Milovic model in nonlinear optics by Sine-Gordon equation method, Optik-International Journal for Light and Electron Optics, 2018, 157, 267-274. doi: 10.1016/j.ijleo.2017.11.061

    CrossRef Google Scholar

    [14] E. Noether, Invariant and variation problems, Transport Theory and Statistical Physics, 1971, 1(3), 186-207. doi: 10.1080/00411457108231446

    CrossRef Google Scholar

    [15] P. Olver, Application of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.

    Google Scholar

    [16] M. S. Osman, Analytical study of rational and double-soliton rational solutions governed by the KdV-Sawada-Kotera-Ramani equation with variable coefficients, Nonlinear Dynamics, 2017, 89(3), 2283-2289. doi: 10.1007/s11071-017-3586-y

    CrossRef Google Scholar

    [17] M. S. Osman and J.A. Machado, The dynamical behavior of mixed-type soliton solutions described by (2+1)-dimensional Bogoyavlensky-Konopelchenko equation with variable coefficients, Journal of Electromagnetic Waves and Applications, 2018, 32(11), 1457-1464. doi: 10.1080/09205071.2018.1445039

    CrossRef Google Scholar

    [18] M. S. Osman, J.A.T Machado and D. Baleanu, On nonautonomous complex wave solutions described by the coupled Schrödinger-Boussinesq equation with variable-coefficients, Optical and Quantum Electronics, 2018, 50(2), 73. doi: 10.1007/s11082-018-1346-y

    CrossRef Google Scholar

    [19] M. S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami and Q. Zhou, The unified method for conformable time fractional Schrödinger equation with perturbation terms, Chinese Journal of Physics, 2018, 56(5), 2500-2506. doi: 10.1016/j.cjph.2018.06.009

    CrossRef Google Scholar

    [20] P. M. Prenter, Splines and Variational Methods, John Wiley, New York, 1975.

    Google Scholar

    [21] M. Randrüüt, On the Kudryashov-Sinelshchikov equation for waves in bubbly liquids, Physics Letters A, 2011, 375(42), 3687-3692. doi: 10.1016/j.physleta.2011.08.048

    CrossRef Google Scholar

    [22] H. Stephani, Differential Equations: Their Solution Using Symmetries, Cambridge University Press, Cambridge, 1989.

    Google Scholar

    [23] H. Triki, T. Ak, S. P. Moshokoa and A. Biswas, Soliton solutions to KdV equation with spatio-temporal dispersion, Ocean Engineering, 2018, 91, 48.

    Google Scholar

    [24] M. Vlieg-Hulstman, The Painlevé analysis and exact travelling wave solutions to nonlinear partial differential equations, Mathematical and Computer Modelling, 1993, 18(10), 151-156. doi: 10.1016/0895-7177(93)90224-M

    CrossRef Google Scholar

    [25] A. M. Wazwaz, The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations, Computers & Mathematics with Applications, 2007, 54(7-8), 926-932.

    Google Scholar

    [26] A. M. Wazwaz, The Hirota's bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation, Applied Mathematics and Computation, 2008, 200(1), 160-166. doi: 10.1016/j.amc.2007.11.001

    CrossRef Google Scholar

    [27] H. Wu, On Bäklund transformations for nonlinear partial differential equations, Journal of Mathematical Analysis and Applications, 1995, 192(1), 151-179. doi: 10.1006/jmaa.1995.1165

    CrossRef Google Scholar

    [28] H. Yang, Symmetry reductions and exact solutions to the Kudryashov-Sinelshchikov equation, Zeitschrift für Naturforschung A, 2016, 71(11)a, 1059-1065. doi: 10.1515/zna-2016-0212

    CrossRef Google Scholar

    [29] V. E. Zakharov and A.B. Shabat, Interaction between solitons in a stable medium, Soviet Physics-Journal of Experimental and Theoretical Physics, 1973, 37(5), 823-828.

    Google Scholar

    [30] S. Zhang and S. Hong, Variable separation method for a nonlinear time fractional partial differential equation with forcing term, Journal of Computational and Applied Mathematics, 2018, 339, 297-305. doi: 10.1016/j.cam.2017.09.045

    CrossRef Google Scholar

Figures(8)  /  Tables(5)

Article Metrics

Article views(3168) PDF downloads(758) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint