Citation: | Guofeng Che, Haibo Chen. EXISTENCE AND CONCENTRATION RESULT FOR KIRCHHOFF EQUATIONS WITH CRITICAL EXPONENT AND HARTREE NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2121-2144. doi: 10.11948/20190338 |
[1] | C. O. Alves and G. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff equation in $\mathbb{R}.{N}$, Nonlinear Anal., 2012, 75, 2750-2759. doi: 10.1016/j.na.2011.11.017 |
[2] | C. O. Alves, M. Souto and S. Soares, Schrödinger-Piosson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377, 584-592. doi: 10.1016/j.jmaa.2010.11.031 |
[3] | A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 345, 90-108. doi: 10.1016/j.jmaa.2008.03.057 |
[4] | V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11(2), 283-293. doi: 10.12775/TMNA.1998.019 |
[5] | H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic problems involving critical Sobolev exponent, Commun. Pure Appl. Math., 1993, 36, 437-477. |
[6] | G. Cerami and G. Vaira, Positive solutions for some non-autonomos Schrödinger-Piosson systems, J. Differential Equations, 2010, 248, 521-543. doi: 10.1016/j.jde.2009.06.017 |
[7] | G. Che, H. Shi and Z. Wang, Existence and concentration of positive ground states for a 1-Laplacian problem in $\mathbb{R}.{N}$, Appl. Math. Lett., 2020, 100, 106045. doi: 10.1016/j.aml.2019.106045 |
[8] | G. Che and H. Chen, Existence and multiplicity of positive solutions for Kirchhoff-Schrödinger-Poisson system with critical growth, Rev. Real. Acad. Cienc. Exactas F., 2020, 114, 1-27. |
[9] | G. Che, H. Chen and T. Wu, Existence and multiplicity of positive solutions for fractional Laplacian systems with nonlinear coupling. J. Math. Phys., 2019, 60(081511), 1-28. |
[10] | G. Che and H. Chen, Infinitely many solutions for the Klein-Gordon equation with sublinear nonlinearity coupled with Born-Infeld theory, Bull. Iran. Math. Soc., 2019. DOI: 10.1007/s41980-019-00314-3. |
[11] | G. Che, H. Chen and T. Wu, Bound state positive solutions for a class of elliptic system with Hartree nonlinearity, Commun. Pure Appl. Anal., 2020, 19, 3697-3722. doi: 10.3934/cpaa.2020163 |
[12] | I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1990. |
[13] |
Y. He, G. Li and S. Peng, Concentrating bound states for Kirchhoff type problems in $\mathbb{R}.{3}$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 2014, 14, 483-510.
$\mathbb{R}.{3}$ involving critical Sobolev exponents" target="_blank">Google Scholar |
[14] | X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}.{3}$, J. Differential Equations, 2012, 252, 1813-1834. doi: 10.1016/j.jde.2011.08.035 |
[15] | L. Huang, E. Rocha and J. Chen, Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity, J. Math. Anal. Appl., 2013, 1, 55-69. |
[16] | N. Ikoma, Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials, Discrete Contin. Dyn. Syst., 2015, 35, 943-966. doi: 10.3934/dcds.2015.35.943 |
[17] | L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger eqution on $\mathbb{R}.{N}$, Indiana Univ. Math. J., 2005, 54, 443-464. doi: 10.1512/iumj.2005.54.2502 |
[18] | S. Kim and J. Seok, On nodal solutions of the nonlinear Schrödinger-Piosson equations, Commun. Contemp. Math., 2012, 14, 1250041. doi: 10.1142/S0219199712500411 |
[19] | G. Kirchhoff, Mechanik. Teubner, 1883. |
[20] | G. Li, Some properties of weak solutions of nonlinear scalar field equations, Ann. Acad. Sci. Fenn. AI Math., 1990, 15, 27-36. doi: 10.5186/aasfm.1990.1521 |
[21] | F. Li, J. Cao and X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 2017, 418, 60-80. |
[22] | P. Lions, The Concentration Compactness Principle in the Calculus of Variations: The Locally Compact Case. Parts 1. In: Ann. Inst. H. Poincar Anal. Non Linaire., 1984, 1, 109-145. |
[23] | P. Lions, The Concentration Compactness Principle in the Calculus of Variations: The Locally Compact Case. Parts 2. In: Ann. Inst. H. Poincar Anal. Non Linaire., 1984, 2, 223-283. |
[24] | Z. Liu and S. Guo, Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math, Phys., 2015, 66, 747-769. doi: 10.1007/s00033-014-0431-8 |
[25] | Z. Liu and S. Guo, Existence of positive ground state solutions for Kirchhoff type problems, Nonlinear Anal., 2015, 120, 1-13. doi: 10.1016/j.na.2014.12.008 |
[26] | D. Ruiz, The Schrödinger-Piosson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237, 655-674. doi: 10.1016/j.jfa.2006.04.005 |
[27] | Y. Su, New result for nonlinear Choquard equations: Doubly critical case. Appl. Math. Lett., 2020, 102, 106092. |
[28] | J. Sun, H. Chen and L. Yang, Postive solutions of asymptotically linear Schrödinger-Poisson systems with a radial potential vanishing at infinity, Nonlinear Anal., 2011, 74, 413-423. doi: 10.1016/j.na.2010.08.052 |
[29] | J. Sun and T. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 2014, 256, 1771-1792. doi: 10.1016/j.jde.2013.12.006 |
[30] | J. Sun and T. Wu, On the nonlinear Schrödinger-Poisson systems with sign-changing potential, Z. Angew. Math. Phys., 2015, 66, 1649-1669. doi: 10.1007/s00033-015-0494-1 |
[31] | J. Sun, T. Wu and Y. Wu, Existence of nontrivial solution for Schrödinger-Poisson systems with indefinite steep potential well, Z. Angew. Math. Phys., 2017, 68, 1-22. doi: 10.1007/s00033-016-0745-9 |
[32] | J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 2012, 253, 2314-2351. doi: 10.1016/j.jde.2012.05.023 |
[33] | M. Willem, Minimax Theorems, Birkhäuser Verlag, 1996. |
[34] | L. Xu and H. Chen, Multipicity of small negative-energy solutions for a class of nonlinear Schrödinger-Poisson systems, Appl. Math. Comput., 2014, 243, 817-824. |
[35] | L. Xu and H. Chen, Nontrivial solutions for Kirchhoff-type problems with a parameter, J. Math. Anal. Appl., 2016, 433, 455-472. doi: 10.1016/j.jmaa.2015.07.035 |
[36] | M. Yang and Y. Wei, Existence and multiplicity of solutions for nonlinear Schrödinger equation with magnetic field and Hartree-type nonlinearities, J. Math. Anal. Appl., 2013, 403, 680-694. doi: 10.1016/j.jmaa.2013.02.062 |
[37] | W. Zou, Variant fountain theorem and their applications, Manuscripta Math., 2001, 104, 343-358. doi: 10.1007/s002290170032 |