2020 Volume 10 Issue 5
Article Contents

Guofeng Che, Haibo Chen. EXISTENCE AND CONCENTRATION RESULT FOR KIRCHHOFF EQUATIONS WITH CRITICAL EXPONENT AND HARTREE NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2121-2144. doi: 10.11948/20190338
Citation: Guofeng Che, Haibo Chen. EXISTENCE AND CONCENTRATION RESULT FOR KIRCHHOFF EQUATIONS WITH CRITICAL EXPONENT AND HARTREE NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2121-2144. doi: 10.11948/20190338

EXISTENCE AND CONCENTRATION RESULT FOR KIRCHHOFF EQUATIONS WITH CRITICAL EXPONENT AND HARTREE NONLINEARITY

  • This paper is concerned with the following Kirchhoff-type equations $\left\{ \begin{array}{l} -\big(\varepsilon^{2}a+\varepsilon b\int_{\mathbb{R}^{3}}|\nabla u|^{2}\mathrm{d}x\big)\Delta u + V(x)u+\mu\phi |u|^{p-2}u=f(x, u), &\quad \mbox{ in }\mathbb{R}^{3}, \\ (-\Delta)^{\frac{\alpha}{2}} \phi=\mu|u|^{p}, ~u>0, &\quad \mbox{ in }\mathbb{R}^{3}, \end{array} \right. $ where $f(x, u)=\lambda K(x)|u|^{q-2}u+Q(x)|u|^{4}u$, $a>0, ~b, ~\mu\geq0$ are constants, $\alpha\in(0, 3)$, $p\in[2, 3), ~q\in[2p, 6)$ and $\varepsilon, ~\lambda>0$ are parameters. Under some mild conditions on $V(x), ~K(x)$ and $Q(x)$, we prove that the above system possesses a ground state solution $u_{\varepsilon}$ with exponential decay at infinity for $\lambda>0$ and $\varepsilon$ small enough. Furthermore, $u_{\varepsilon}$ concentrates around a global minimum point of $V(x)$ as $\varepsilon\rightarrow0$. The methods used here are based on minimax theorems and the concentration-compactness principle of Lions. Our results generalize and improve those in Liu and Guo (Z Angew Math Phys 66: 747-769, 2015), Zhao and Zhao (Nonlinear Anal 70: 2150-2164, 2009) and some other related literature.
  • 加载中
  • [1] C. O. Alves and G. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff equation in $\mathbb{R}.{N}$, Nonlinear Anal., 2012, 75, 2750-2759. doi: 10.1016/j.na.2011.11.017

    CrossRef $\mathbb{R}.{N}$" target="_blank">Google Scholar

    [2] C. O. Alves, M. Souto and S. Soares, Schrödinger-Piosson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377, 584-592. doi: 10.1016/j.jmaa.2010.11.031

    CrossRef Google Scholar

    [3] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 345, 90-108. doi: 10.1016/j.jmaa.2008.03.057

    CrossRef Google Scholar

    [4] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11(2), 283-293. doi: 10.12775/TMNA.1998.019

    CrossRef Google Scholar

    [5] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic problems involving critical Sobolev exponent, Commun. Pure Appl. Math., 1993, 36, 437-477.

    Google Scholar

    [6] G. Cerami and G. Vaira, Positive solutions for some non-autonomos Schrödinger-Piosson systems, J. Differential Equations, 2010, 248, 521-543. doi: 10.1016/j.jde.2009.06.017

    CrossRef Google Scholar

    [7] G. Che, H. Shi and Z. Wang, Existence and concentration of positive ground states for a 1-Laplacian problem in $\mathbb{R}.{N}$, Appl. Math. Lett., 2020, 100, 106045. doi: 10.1016/j.aml.2019.106045

    CrossRef $\mathbb{R}.{N}$" target="_blank">Google Scholar

    [8] G. Che and H. Chen, Existence and multiplicity of positive solutions for Kirchhoff-Schrödinger-Poisson system with critical growth, Rev. Real. Acad. Cienc. Exactas F., 2020, 114, 1-27.

    Google Scholar

    [9] G. Che, H. Chen and T. Wu, Existence and multiplicity of positive solutions for fractional Laplacian systems with nonlinear coupling. J. Math. Phys., 2019, 60(081511), 1-28.

    Google Scholar

    [10] G. Che and H. Chen, Infinitely many solutions for the Klein-Gordon equation with sublinear nonlinearity coupled with Born-Infeld theory, Bull. Iran. Math. Soc., 2019. DOI: 10.1007/s41980-019-00314-3.

    CrossRef Google Scholar

    [11] G. Che, H. Chen and T. Wu, Bound state positive solutions for a class of elliptic system with Hartree nonlinearity, Commun. Pure Appl. Anal., 2020, 19, 3697-3722. doi: 10.3934/cpaa.2020163

    CrossRef Google Scholar

    [12] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1990.

    Google Scholar

    [13] Y. He, G. Li and S. Peng, Concentrating bound states for Kirchhoff type problems in $\mathbb{R}.{3}$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 2014, 14, 483-510.

    $\mathbb{R}.{3}$ involving critical Sobolev exponents" target="_blank">Google Scholar

    [14] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}.{3}$, J. Differential Equations, 2012, 252, 1813-1834. doi: 10.1016/j.jde.2011.08.035

    CrossRef $\mathbb{R}.{3}$" target="_blank">Google Scholar

    [15] L. Huang, E. Rocha and J. Chen, Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity, J. Math. Anal. Appl., 2013, 1, 55-69.

    Google Scholar

    [16] N. Ikoma, Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials, Discrete Contin. Dyn. Syst., 2015, 35, 943-966. doi: 10.3934/dcds.2015.35.943

    CrossRef Google Scholar

    [17] L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger eqution on $\mathbb{R}.{N}$, Indiana Univ. Math. J., 2005, 54, 443-464. doi: 10.1512/iumj.2005.54.2502

    CrossRef $\mathbb{R}.{N}$" target="_blank">Google Scholar

    [18] S. Kim and J. Seok, On nodal solutions of the nonlinear Schrödinger-Piosson equations, Commun. Contemp. Math., 2012, 14, 1250041. doi: 10.1142/S0219199712500411

    CrossRef Google Scholar

    [19] G. Kirchhoff, Mechanik. Teubner, 1883.

    Google Scholar

    [20] G. Li, Some properties of weak solutions of nonlinear scalar field equations, Ann. Acad. Sci. Fenn. AI Math., 1990, 15, 27-36. doi: 10.5186/aasfm.1990.1521

    CrossRef Google Scholar

    [21] F. Li, J. Cao and X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 2017, 418, 60-80.

    Google Scholar

    [22] P. Lions, The Concentration Compactness Principle in the Calculus of Variations: The Locally Compact Case. Parts 1. In: Ann. Inst. H. Poincar Anal. Non Linaire., 1984, 1, 109-145.

    Google Scholar

    [23] P. Lions, The Concentration Compactness Principle in the Calculus of Variations: The Locally Compact Case. Parts 2. In: Ann. Inst. H. Poincar Anal. Non Linaire., 1984, 2, 223-283.

    Google Scholar

    [24] Z. Liu and S. Guo, Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math, Phys., 2015, 66, 747-769. doi: 10.1007/s00033-014-0431-8

    CrossRef Google Scholar

    [25] Z. Liu and S. Guo, Existence of positive ground state solutions for Kirchhoff type problems, Nonlinear Anal., 2015, 120, 1-13. doi: 10.1016/j.na.2014.12.008

    CrossRef Google Scholar

    [26] D. Ruiz, The Schrödinger-Piosson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237, 655-674. doi: 10.1016/j.jfa.2006.04.005

    CrossRef Google Scholar

    [27] Y. Su, New result for nonlinear Choquard equations: Doubly critical case. Appl. Math. Lett., 2020, 102, 106092.

    Google Scholar

    [28] J. Sun, H. Chen and L. Yang, Postive solutions of asymptotically linear Schrödinger-Poisson systems with a radial potential vanishing at infinity, Nonlinear Anal., 2011, 74, 413-423. doi: 10.1016/j.na.2010.08.052

    CrossRef Google Scholar

    [29] J. Sun and T. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 2014, 256, 1771-1792. doi: 10.1016/j.jde.2013.12.006

    CrossRef Google Scholar

    [30] J. Sun and T. Wu, On the nonlinear Schrödinger-Poisson systems with sign-changing potential, Z. Angew. Math. Phys., 2015, 66, 1649-1669. doi: 10.1007/s00033-015-0494-1

    CrossRef Google Scholar

    [31] J. Sun, T. Wu and Y. Wu, Existence of nontrivial solution for Schrödinger-Poisson systems with indefinite steep potential well, Z. Angew. Math. Phys., 2017, 68, 1-22. doi: 10.1007/s00033-016-0745-9

    CrossRef Google Scholar

    [32] J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 2012, 253, 2314-2351. doi: 10.1016/j.jde.2012.05.023

    CrossRef Google Scholar

    [33] M. Willem, Minimax Theorems, Birkhäuser Verlag, 1996.

    Google Scholar

    [34] L. Xu and H. Chen, Multipicity of small negative-energy solutions for a class of nonlinear Schrödinger-Poisson systems, Appl. Math. Comput., 2014, 243, 817-824.

    Google Scholar

    [35] L. Xu and H. Chen, Nontrivial solutions for Kirchhoff-type problems with a parameter, J. Math. Anal. Appl., 2016, 433, 455-472. doi: 10.1016/j.jmaa.2015.07.035

    CrossRef Google Scholar

    [36] M. Yang and Y. Wei, Existence and multiplicity of solutions for nonlinear Schrödinger equation with magnetic field and Hartree-type nonlinearities, J. Math. Anal. Appl., 2013, 403, 680-694. doi: 10.1016/j.jmaa.2013.02.062

    CrossRef Google Scholar

    [37] W. Zou, Variant fountain theorem and their applications, Manuscripta Math., 2001, 104, 343-358. doi: 10.1007/s002290170032

    CrossRef Google Scholar

Article Metrics

Article views(3087) PDF downloads(377) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint