2020 Volume 10 Issue 5
Article Contents

Zheng Zhou, Bing Tan, Songxiao Li. AN INERTIAL SHRINKING PROJECTION ALGORITHM FOR SPLIT COMMON FIXED POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2104-2120. doi: 10.11948/20190330
Citation: Zheng Zhou, Bing Tan, Songxiao Li. AN INERTIAL SHRINKING PROJECTION ALGORITHM FOR SPLIT COMMON FIXED POINT PROBLEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2104-2120. doi: 10.11948/20190330

AN INERTIAL SHRINKING PROJECTION ALGORITHM FOR SPLIT COMMON FIXED POINT PROBLEMS

  • In this paper, the purpose is to introduce and study a new modified shrinking projection algorithm with inertial effects, which solves split common fixed point problems in Banach spaces. The corresponding strong convergence theorems are obtained without the assumption of semi-compactness on mappings. Finally, some numerical examples are presented to illustrate the results in this paper.
  • 加载中
  • [1] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 2001, 9(1-2), 3-11.

    Google Scholar

    [2] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 2002, 18(2), 441-453. doi: 10.1088/0266-5611/18/2/310

    CrossRef Google Scholar

    [3] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 2012, 13(4), 759-775.

    Google Scholar

    [4] L. Ceng, A. Petruşel, C. Wen and J. C. Yao, Inertial-like subgradient extragradient methods for variational inequalities and fixed points of asymptotically nonexpansive and strictly pseudocontractive mappings, Mathematics, 2019, 7(9), 860. doi: 10.3390/math7090860

    CrossRef Google Scholar

    [5] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 2006, 51(10), 2353-2365. doi: 10.1088/0031-9155/51/10/001

    CrossRef Google Scholar

    [6] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 1994, 8(2), 221-239. doi: 10.1007/BF02142692

    CrossRef Google Scholar

    [7] Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 2005, 21(6), 2071. doi: 10.1088/0266-5611/21/6/017

    CrossRef Google Scholar

    [8] Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 2012, 59(2), 301-323. doi: 10.1007/s11075-011-9490-5

    CrossRef Google Scholar

    [9] Y. Censor, A. Motova and A. Segal, Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., 2007, 327(2), 1244-1256. doi: 10.1016/j.jmaa.2006.05.010

    CrossRef Google Scholar

    [10] Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 2009, 16(2), 587-600.

    Google Scholar

    [11] S. Y. Cho, Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., 2018, 8(1), 19-31.

    Google Scholar

    [12] S. Y. Cho, B. A. Bin Dehaish and X. Qin, Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., 2017, 7(2), 427-438.

    Google Scholar

    [13] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Springer Science & Business Media, 2012.

    Google Scholar

    [14] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 2005, 6(1), 117-136.

    Google Scholar

    [15] V. H. Dang, New inertial algorithm for a class of equilibrium problems, Numer. Algorithms, 2019, 80(4), 1413-1436. doi: 10.1007/s11075-018-0532-0

    CrossRef Google Scholar

    [16] L. Liu, A hybrid steepest descent method for solving split feasibility problems involving nonexpansive mappings, J. Nonlinear Convex Anal., 2019, 20(3), 471-488.

    Google Scholar

    [17] L. Liu, X. Qin and R. P. Agarwal, Iterative methods for fixed points and zero points of nonlinear mappings with applications, Optimization, 2019, 1-21.

    Google Scholar

    [18] Z. Ma, L. Wang and S. Chang, On the split feasibility problem and fixed point problem of quasi-$\phi$-nonexpansive mapping in Banach spaces, Numer. Algorithms, 2019, 80(4), 1203-1218. doi: 10.1007/s11075-018-0523-1

    CrossRef Google Scholar

    [19] P. E. Maingé and A. Moudafi, Convergence of new inertial proximal methods for DC programming, SIAM J. Optim., 2008, 19(1), 397-413. doi: 10.1137/060655183

    CrossRef Google Scholar

    [20] B. Martinet, Brève communication. Régularisation d'inéquations variationnelles par approximations successives, Revue française d'informatique et de recherche opérationnelle. Série rouge, 1970, 4(R3), 154-158.

    Google Scholar

    [21] X. Qin and N. T. An, Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets, Comput. Optim. Appl., 2019, 74(3), 821-850. doi: 10.1007/s10589-019-00124-7

    CrossRef Google Scholar

    [22] X. Qin, A. Petrusel and J. C. Yao, CQ iterative algorithms for fixed points of nonexpansive mappings and split feasibility problems in Hilbert spaces, J. Nonlinear Convex Anal., 2018, 19(1), 157-165.

    Google Scholar

    [23] X. Qin and J. C. Yao, A viscosity iterative method for a split feasibility problem, J. Nonlinear Convex Anal., 2019, 20(8), 1497-1506.

    Google Scholar

    [24] Y. Shehu, O. Iyiola and E. Akaligwo, Modified inertial methods for finding common solutions to variational inequality problems, Fixed Point Theory, 2019, 20(2), 683-702. doi: 10.24193/fpt-ro.2019.2.45

    CrossRef Google Scholar

    [25] Y. Shehu, F. Ogbuisi and O. Iyiola, Convergence analysis of an iterative algorithm for fixed point problems and split feasibility problems in certain Banach spaces, Optimization, 2016, 65(2), 299-323. doi: 10.1080/02331934.2015.1039533

    CrossRef Google Scholar

    [26] W. Takahashi, Mann and Halpern iterations for the split common fixed point problem in Banach spaces, Linear Nonlinear Anal., 2017, 3, 1-18.

    Google Scholar

    [27] W. Takahashi, Weak and strong convergence theorems for new demimetric mappings and the split common fixed point problem in Banach spaces, Numer. Funct. Anal. Optim., 2018, 39(10), 1011-1033. doi: 10.1080/01630563.2018.1466803

    CrossRef Google Scholar

    [28] W. Takahashi and J. C. Yao, Strong convergence theorems by hybrid methods for the split common null point problem in Banach spaces, Fixed Point Theory Appl., 2015, 2015(1), 87. doi: 10.1186/s13663-015-0324-3

    CrossRef Google Scholar

    [29] J. Tang, S. Chang, L. Wang and X. Wang, On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in Banach spaces, J. Inequal. Appl., 2015, 2015(1), 305.

    Google Scholar

    [30] H. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 1991, 16(12), 1127-1138. doi: 10.1016/0362-546X(91)90200-K

    CrossRef Google Scholar

    [31] X. Zhang, L. Wang, Z. Ma and L. Qin, The strong convergence theorems for split common fixed point problem of asymptotically nonexpansive mappings in Hilbert spaces, J. Inequal. Appl., 2015, 2015(1), 1.

    Google Scholar

Figures(2)  /  Tables(2)

Article Metrics

Article views(2198) PDF downloads(404) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint