2020 Volume 10 Issue 6
Article Contents

Necdet Bildik, Sinan Deniz. OPTIMAL ITERATIVE PERTURBATION TECHNIQUE FOR SOLVING JEFFERY–HAMEL FLOW WITH HIGH MAGNETIC FIELD AND NANOPARTICLE[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2476-2490. doi: 10.11948/20190378
Citation: Necdet Bildik, Sinan Deniz. OPTIMAL ITERATIVE PERTURBATION TECHNIQUE FOR SOLVING JEFFERY–HAMEL FLOW WITH HIGH MAGNETIC FIELD AND NANOPARTICLE[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2476-2490. doi: 10.11948/20190378

OPTIMAL ITERATIVE PERTURBATION TECHNIQUE FOR SOLVING JEFFERY–HAMEL FLOW WITH HIGH MAGNETIC FIELD AND NANOPARTICLE

  • In this research paper, a different semi-analytical analysis of modified magnetohydrodynamic Jeffery–Hamel flow is conducted via the newly developed technique. We use the optimal iterative perturbation method with multiple parameters to see the effects of the magnetic field and nanoparticle on the Jeffery–Hamel flow. Comparing our new approximate solutions with some earlier works proved the excellent accuracy of the newly proposed technique. Convergence analysis of the proposed method is also discussed and error estimation is given to anticipate the accuracy of higher-order approximate solutions.
    MSC: 70E20, 70K60, 76A02, 76W05
  • 加载中
  • [1] P. Agarwal et al., A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques, Physica A: Statistical Mechanics and its Applications, 2020, 542, 122769.

    Google Scholar

    [2] J. F. G. Aguilar, K. M. Saad and D. Baleanu, Fractional dynamics of an erbium-doped fiber laser model, Optical and Quantum Electronics, 2019, 51(9), 316. doi: 10.1007/s11082-019-2033-3

    CrossRef Google Scholar

    [3] A. A. Alderremy et al., Certain new models of the multi space-fractional Gardner equation, Physica A: Statistical Mechanics and its Applications, 2020, 545, 123806.

    Google Scholar

    [4] S. M. Aminossadati and B. Ghasemi, Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure, Eur. J. Mech. B/Fluids, 2009, 28, 630-640. doi: 10.1016/j.euromechflu.2009.05.006

    CrossRef Google Scholar

    [5] A. Bekir, O. Guner, O. Unsal and M. Mirzazadeh, Applications of fractional complex transform and (G'/G)-expansion method for time-fractional differential equations, Journal of Applied Analysis and Computation, 2016, 6(1), 131-144.

    Google Scholar

    [6] N. Bildik, S. Deniz and K. M. Saad, A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique, Chaos, Solitons & Fractals, 2020, 132.

    Google Scholar

    [7] N. Bildik and S. Deniz, A new efficient method for solving delay differential equations and a comparison with other methods, The European Physical Journal Plus, 2017, 132(1), 51. doi: 10.1140/epjp/i2017-11344-9

    CrossRef Google Scholar

    [8] N. Bildik and S. Deniz, A new fractional analysis on the polluted lakes system, Chaos, Solitons & Fractals, 2019, 122, 17-24.

    Google Scholar

    [9] N. Bildik and S. Deniz, Comparative study between optimal homotopy asymptotic method and perturbation-iteration technique for different types of nonlinear equations, Iranian Journal of Science and Technology Transactions A: Science, 2018, 42(2), 647-654. doi: 10.1007/s40995-016-0039-2

    CrossRef Google Scholar

    [10] N. Bildik and S. Deniz, New analytic approximate solutions to the generalized regularized long wave equations, Bulletin of the Korean Mathematical Society, 2018, 55(3), 749-762.

    Google Scholar

    [11] N. Bildik and S. Deniz, New approximate solutions to electrostatic differential equations obtained by using numerical and analytical methods, Georgian Mathematical Journal, 2020, 27(1), 23-30. doi: 10.1515/gmj-2018-0012

    CrossRef Google Scholar

    [12] N. Bildik and S. Deniz, New approximate solutions to the nonlinear Klein-Gordon equations using perturbation iteration techniques, Discrete & Continuous Dynamical Systems-S, 2020, 13(3), 503.

    Google Scholar

    [13] N. Bildik and S. Deniz, Solving the Burgers' and regularized long wave equations using the new perturbation iteration technique, Numerical Methods for Partial Differential Equations, 2018, 34(5), 1489-1501. doi: 10.1002/num.22214

    CrossRef Google Scholar

    [14] J. Choi, H. Kim and R. Sakthivel, Exact travelling wave solutions of reaction diffusion models of fractional order, Journal of Applied Analysis and Computation, 2017, 7(1), 236-248.

    Google Scholar

    [15] S. Deniz and N. Bildik, A new analytical technique for solving Lane-Emden type equations arising in astrophysics, Bulletin of the Belgian Mathematical Society-Simon Stevin, 2017, 24(4), 305-320.

    Google Scholar

    [16] S. Deniz, Modification of coupled Drinfel'd-Sokolov-Wilson Equation and approximate solutions by optimal perturbation iteration method, Afyon Kocatepe University Journal of Science and Engineering, 2020, 20(1), 35-40.

    Google Scholar

    [17] S. Deniz, Optimal perturbation iteration method for solving nonlinear heat transfer equations, Journal of Heat Transfer-ASME, 2017, 139(37), 074503-1, ,

    Google Scholar

    [18] S. Deniz, Optimal perturbation iteration method for solving nonlinear Volterra-Fredholm integral equations, Mathematical Methods in the Applied Sciences, 2020. https://doi.org/10.1002/mma.6312.

    Google Scholar

    [19] S. Deniz and N. Bildik, Optimal perturbation iteration method for Bratu-type problems, Journal of King Saud University-Science, 2018, 30(1), 91-99. doi: 10.1016/j.jksus.2016.09.001

    CrossRef Google Scholar

    [20] S. Deniz and M. Sezer, Rational Chebyshev collocation method for solving nonlinear heat transfer equations, International Communications in Heat and Mass Transfer, 2020, 114, 104595. doi: 10.1016/j.icheatmasstransfer.2020.104595

    CrossRef Google Scholar

    [21] S. Deniz, Semi-analytical investigation of modified Boussinesq-Burger equations, J. BAUN Inst. Sci. Technol., 2020, 22(1), 327-333.

    Google Scholar

    [22] S. Deniz, Semi-analytical analysis of Allen-Cahn model with a new fractional derivative, Mathematical Methods in the Applied Sciences, 2020, https://doi.org/10.1002/mma.5892.

    Google Scholar

    [23] M. Esmaelpour and D. D. Ganji, Solution of the Jeffery - Hamel flow problem by optimal homotopy asymptotic method, Computers & Mathematics with Applications, 2010, 59(11), 3405-3411.

    Google Scholar

    [24] Q. Esmaili, et al., An approximation of the analytical solution of the Jeffery - Hamel flow by decomposition method, Physics Letters A, 2008, 372(19), 3434-3439.

    Google Scholar

    [25] G. Hamel, Spiralf?rmige bewegungen z?her flüssigkeiten, Jahresbericht der Deutschen Mathematiker-Vereinigung, 1917, 25, 34-60.

    Google Scholar

    [26] O. Guner, Exact travelling wave solutions to the space-time fractional Calogero-Degasperis equation using different methods, Journal of Applied Analysis and Computation, 2019, 9(2), 428-439. doi: 10.11948/2156-907X.20160254

    CrossRef Google Scholar

    [27] N. Herisanu and V. Marinca, Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method, Computers & Mathematics with Applications, 2010, 60(6), 1607-1615, ,

    Google Scholar

    [28] G. B. Jeffery, The two-dimensional steady motion of a viscous fluid, Phil. Mag., 1915, 6(29), 455-465.

    Google Scholar

    [29] M. Javidi and B. Ahmad, Numerical solution of fourth-order time-fractional partial differential equations with variable coefficients, Journal of Applied Analysis and Computation, 2015, 5(1), 52-63.

    Google Scholar

    [30] A. A. Joneidi, G. Domairry and M. Babaelahi, Three analytical methods applied to Jeffery - Hamel flow, Communications in Nonlinear Science and Numerical Simulation, 2010, 15(11), 3423-3434. doi: 10.1016/j.cnsns.2009.12.023

    CrossRef Google Scholar

    [31] M. M. Khader and K. M. Saad, Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020. https://doi.org/10.1007/s40010-020-00656-2.

    Google Scholar

    [32] V. Marinca and N. Herisanu, The optimal homotopy asymptotic method for solving Blasius equation, Applied Mathematics and Computation 2014, 231, 134-139. doi: 10.1016/j.amc.2013.12.121

    CrossRef Google Scholar

    [33] V. Marinca and N. Herisanu, Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, International Communications in Heat and Mass Transfer, 2008, 35(6), 710-715. doi: 10.1016/j.icheatmasstransfer.2008.02.010

    CrossRef Google Scholar

    [34] V. Marinca and N. Herisanu, Optimal Homotopy Asymptotic Method, Springer International Publishing, 2015.

    Google Scholar

    [35] N. Herisanu, An optimal homotopy asymptotic approach applied to nonlinear MHD Jeffery-Hamel flow, Mathematical problems in engineering, 2011. https://doi.org/10.1155/2011/169056.

    Google Scholar

    [36] S. S. Motsa et al., A new spectral-homotopy analysis method for the MHD Jeffery - Hamel problem, Computers & Fluids, 2010, 39(7), 1219-1225.

    Google Scholar

    [37] K. M. Saad, S. Deniz and D. Baleanu, On a new modified fractional analysis of Nagumo equation, International Journal of Biomathematics, 2019, 12(03), 1950034. doi: 10.1142/S1793524519500347

    CrossRef Google Scholar

    [38] K. M. Saad, A. Atangana and D. Baleanu, New fractional derivatives with non-singular kernel applied to the Burgers equation, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(6), 063109. doi: 10.1063/1.5026284

    CrossRef Google Scholar

    [39] K. M. Saad and E. H. F AL-Sharif, Comparative study of a cubic autocatalytic reaction via different analysis methods, Discrete & Continuous Dynamical Systems-S, 2019, 12(3), 665.

    Google Scholar

    [40] K. M. Saad et al., On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method, Chinese Journal of Physics, 2020, 63, 149-162. doi: 10.1016/j.cjph.2019.11.004

    CrossRef Google Scholar

    [41] M. Sheikholeslami et al., Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method, Applied Mathematics and Mechanics, 2012, 33(1), 25-36. doi: 10.1007/s10483-012-1531-7

    CrossRef Google Scholar

    [42] L. Yuan and Z. Alam, An optimal homotopy analysis method based on particle swarm optimization: application to fractional-order differential equation, Journal of Applied Analysis and Computation, 2016, 6 (1), 103-118.

    Google Scholar

Figures(9)

Article Metrics

Article views(3653) PDF downloads(419) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint