[1]
|
P. Agarwal et al., A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques, Physica A: Statistical Mechanics and its Applications, 2020, 542, 122769.
Google Scholar
|
[2]
|
J. F. G. Aguilar, K. M. Saad and D. Baleanu, Fractional dynamics of an erbium-doped fiber laser model, Optical and Quantum Electronics, 2019, 51(9), 316. doi: 10.1007/s11082-019-2033-3
CrossRef Google Scholar
|
[3]
|
A. A. Alderremy et al., Certain new models of the multi space-fractional Gardner equation, Physica A: Statistical Mechanics and its Applications, 2020, 545, 123806.
Google Scholar
|
[4]
|
S. M. Aminossadati and B. Ghasemi, Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure, Eur. J. Mech. B/Fluids, 2009, 28, 630-640. doi: 10.1016/j.euromechflu.2009.05.006
CrossRef Google Scholar
|
[5]
|
A. Bekir, O. Guner, O. Unsal and M. Mirzazadeh, Applications of fractional complex transform and (G'/G)-expansion method for time-fractional differential equations, Journal of Applied Analysis and Computation, 2016, 6(1), 131-144.
Google Scholar
|
[6]
|
N. Bildik, S. Deniz and K. M. Saad, A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique, Chaos, Solitons & Fractals, 2020, 132.
Google Scholar
|
[7]
|
N. Bildik and S. Deniz, A new efficient method for solving delay differential equations and a comparison with other methods, The European Physical Journal Plus, 2017, 132(1), 51. doi: 10.1140/epjp/i2017-11344-9
CrossRef Google Scholar
|
[8]
|
N. Bildik and S. Deniz, A new fractional analysis on the polluted lakes system, Chaos, Solitons & Fractals, 2019, 122, 17-24.
Google Scholar
|
[9]
|
N. Bildik and S. Deniz, Comparative study between optimal homotopy asymptotic method and perturbation-iteration technique for different types of nonlinear equations, Iranian Journal of Science and Technology Transactions A: Science, 2018, 42(2), 647-654. doi: 10.1007/s40995-016-0039-2
CrossRef Google Scholar
|
[10]
|
N. Bildik and S. Deniz, New analytic approximate solutions to the generalized regularized long wave equations, Bulletin of the Korean Mathematical Society, 2018, 55(3), 749-762.
Google Scholar
|
[11]
|
N. Bildik and S. Deniz, New approximate solutions to electrostatic differential equations obtained by using numerical and analytical methods, Georgian Mathematical Journal, 2020, 27(1), 23-30. doi: 10.1515/gmj-2018-0012
CrossRef Google Scholar
|
[12]
|
N. Bildik and S. Deniz, New approximate solutions to the nonlinear Klein-Gordon equations using perturbation iteration techniques, Discrete & Continuous Dynamical Systems-S, 2020, 13(3), 503.
Google Scholar
|
[13]
|
N. Bildik and S. Deniz, Solving the Burgers' and regularized long wave equations using the new perturbation iteration technique, Numerical Methods for Partial Differential Equations, 2018, 34(5), 1489-1501. doi: 10.1002/num.22214
CrossRef Google Scholar
|
[14]
|
J. Choi, H. Kim and R. Sakthivel, Exact travelling wave solutions of reaction diffusion models of fractional order, Journal of Applied Analysis and Computation, 2017, 7(1), 236-248.
Google Scholar
|
[15]
|
S. Deniz and N. Bildik, A new analytical technique for solving Lane-Emden type equations arising in astrophysics, Bulletin of the Belgian Mathematical Society-Simon Stevin, 2017, 24(4), 305-320.
Google Scholar
|
[16]
|
S. Deniz, Modification of coupled Drinfel'd-Sokolov-Wilson Equation and approximate solutions by optimal perturbation iteration method, Afyon Kocatepe University Journal of Science and Engineering, 2020, 20(1), 35-40.
Google Scholar
|
[17]
|
S. Deniz, Optimal perturbation iteration method for solving nonlinear heat transfer equations, Journal of Heat Transfer-ASME, 2017, 139(37), 074503-1, ,
Google Scholar
|
[18]
|
S. Deniz, Optimal perturbation iteration method for solving nonlinear Volterra-Fredholm integral equations, Mathematical Methods in the Applied Sciences, 2020. https://doi.org/10.1002/mma.6312.
Google Scholar
|
[19]
|
S. Deniz and N. Bildik, Optimal perturbation iteration method for Bratu-type problems, Journal of King Saud University-Science, 2018, 30(1), 91-99. doi: 10.1016/j.jksus.2016.09.001
CrossRef Google Scholar
|
[20]
|
S. Deniz and M. Sezer, Rational Chebyshev collocation method for solving nonlinear heat transfer equations, International Communications in Heat and Mass Transfer, 2020, 114, 104595. doi: 10.1016/j.icheatmasstransfer.2020.104595
CrossRef Google Scholar
|
[21]
|
S. Deniz, Semi-analytical investigation of modified Boussinesq-Burger equations, J. BAUN Inst. Sci. Technol., 2020, 22(1), 327-333.
Google Scholar
|
[22]
|
S. Deniz, Semi-analytical analysis of Allen-Cahn model with a new fractional derivative, Mathematical Methods in the Applied Sciences, 2020, https://doi.org/10.1002/mma.5892.
Google Scholar
|
[23]
|
M. Esmaelpour and D. D. Ganji, Solution of the Jeffery - Hamel flow problem by optimal homotopy asymptotic method, Computers & Mathematics with Applications, 2010, 59(11), 3405-3411.
Google Scholar
|
[24]
|
Q. Esmaili, et al., An approximation of the analytical solution of the Jeffery - Hamel flow by decomposition method, Physics Letters A, 2008, 372(19), 3434-3439.
Google Scholar
|
[25]
|
G. Hamel, Spiralf?rmige bewegungen z?her flüssigkeiten, Jahresbericht der Deutschen Mathematiker-Vereinigung, 1917, 25, 34-60.
Google Scholar
|
[26]
|
O. Guner, Exact travelling wave solutions to the space-time fractional Calogero-Degasperis equation using different methods, Journal of Applied Analysis and Computation, 2019, 9(2), 428-439. doi: 10.11948/2156-907X.20160254
CrossRef Google Scholar
|
[27]
|
N. Herisanu and V. Marinca, Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method, Computers & Mathematics with Applications, 2010, 60(6), 1607-1615, ,
Google Scholar
|
[28]
|
G. B. Jeffery, The two-dimensional steady motion of a viscous fluid, Phil. Mag., 1915, 6(29), 455-465.
Google Scholar
|
[29]
|
M. Javidi and B. Ahmad, Numerical solution of fourth-order time-fractional partial differential equations with variable coefficients, Journal of Applied Analysis and Computation, 2015, 5(1), 52-63.
Google Scholar
|
[30]
|
A. A. Joneidi, G. Domairry and M. Babaelahi, Three analytical methods applied to Jeffery - Hamel flow, Communications in Nonlinear Science and Numerical Simulation, 2010, 15(11), 3423-3434. doi: 10.1016/j.cnsns.2009.12.023
CrossRef Google Scholar
|
[31]
|
M. M. Khader and K. M. Saad, Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020. https://doi.org/10.1007/s40010-020-00656-2.
Google Scholar
|
[32]
|
V. Marinca and N. Herisanu, The optimal homotopy asymptotic method for solving Blasius equation, Applied Mathematics and Computation 2014, 231, 134-139. doi: 10.1016/j.amc.2013.12.121
CrossRef Google Scholar
|
[33]
|
V. Marinca and N. Herisanu, Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, International Communications in Heat and Mass Transfer, 2008, 35(6), 710-715. doi: 10.1016/j.icheatmasstransfer.2008.02.010
CrossRef Google Scholar
|
[34]
|
V. Marinca and N. Herisanu, Optimal Homotopy Asymptotic Method, Springer International Publishing, 2015.
Google Scholar
|
[35]
|
N. Herisanu, An optimal homotopy asymptotic approach applied to nonlinear MHD Jeffery-Hamel flow, Mathematical problems in engineering, 2011. https://doi.org/10.1155/2011/169056.
Google Scholar
|
[36]
|
S. S. Motsa et al., A new spectral-homotopy analysis method for the MHD Jeffery - Hamel problem, Computers & Fluids, 2010, 39(7), 1219-1225.
Google Scholar
|
[37]
|
K. M. Saad, S. Deniz and D. Baleanu, On a new modified fractional analysis of Nagumo equation, International Journal of Biomathematics, 2019, 12(03), 1950034. doi: 10.1142/S1793524519500347
CrossRef Google Scholar
|
[38]
|
K. M. Saad, A. Atangana and D. Baleanu, New fractional derivatives with non-singular kernel applied to the Burgers equation, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(6), 063109. doi: 10.1063/1.5026284
CrossRef Google Scholar
|
[39]
|
K. M. Saad and E. H. F AL-Sharif, Comparative study of a cubic autocatalytic reaction via different analysis methods, Discrete & Continuous Dynamical Systems-S, 2019, 12(3), 665.
Google Scholar
|
[40]
|
K. M. Saad et al., On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method, Chinese Journal of Physics, 2020, 63, 149-162. doi: 10.1016/j.cjph.2019.11.004
CrossRef Google Scholar
|
[41]
|
M. Sheikholeslami et al., Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method, Applied Mathematics and Mechanics, 2012, 33(1), 25-36. doi: 10.1007/s10483-012-1531-7
CrossRef Google Scholar
|
[42]
|
L. Yuan and Z. Alam, An optimal homotopy analysis method based on particle swarm optimization: application to fractional-order differential equation, Journal of Applied Analysis and Computation, 2016, 6 (1), 103-118.
Google Scholar
|