[1]
|
J. Auslander and J. A. Yorke, Interval maps, factors of maps and chaos, Tohoku math. J., 1980, 32(2), 177-188. doi: 10.2748/tmj/1178229634
CrossRef Google Scholar
|
[2]
|
G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.
Google Scholar
|
[3]
|
J. Banks, Chaos for induced hyperspace maps, Chaos, Soliton. Fract., 2005, 25(3), 681-685.
Google Scholar
|
[4]
|
M. Barge and J. Martin, Chaos, periodicity and snakelike continua, Trans. Amer. Math. Soc., 1985, 289, 355-365. doi: 10.1090/S0002-9947-1985-0779069-7
CrossRef Google Scholar
|
[5]
|
J. R. Chazottes and B. FernSndez, Dynamics of coupled map lattices and of related spatially extended systems, Springer. Berlin. Heidelberg, 2005.
Google Scholar
|
[6]
|
J. S. Cánovas and M. R. Marín, Chaos on MPE-sets of duopoly games, Chaos, Soliton. Fract., 2004, 19(1), 179-183.
Google Scholar
|
[7]
|
N. Deǧirmenci and Koçak Ş, Chaos in product maps, Turk. J. Math., 2010, 34(4), 593-600.
Google Scholar
|
[8]
|
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison Wesley, New York. USA, 1989.
Google Scholar
|
[9]
|
J. L. García Guirao and M. Lampart, Chaos of a coupled lattice system related with Belusov-Zhabotinskii reaction, J. Math. Chem., 2010, 48, 159-164. doi: 10.1007/s10910-009-9647-9
CrossRef Google Scholar
|
[10]
|
R. Gu, Kato's chaos in set-valued discrete systems, Chaos, Soliton. Fract., 2007, 31(3), 765-771.
Google Scholar
|
[11]
|
R. Heriberto, Robinson's chaos in set valued discrete systems, Chaos, Soliton. Fract., 2005, 25(1), 33-42.
Google Scholar
|
[12]
|
R. Heriberto, A note on transitivity in set valued discrete systems, Chaos, Soliton. Fract., 2003, 17(1), 99-104.
Google Scholar
|
[13]
|
D. Kwietniak and P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos, Soliton. Fract., 2007, 33(1), 76-86.
Google Scholar
|
[14]
|
H. Kato, Everywhere chaotic homeomorphisms on manifields and $k$-dimensional Menger manifolds, Topol. Appl., 1996, 72(1), 1-17. doi: 10.1016/0166-8641(96)00008-9
CrossRef Google Scholar
|
[15]
|
S. Kolyada and L. Snoha, Some aspects of topological transitivity-a survey, Grazer Math. Ber., 1997, 334, 3-35.
Google Scholar
|
[16]
|
G. Liao, X. Ma and L. Wang, Individual chaos implies collective chaos for weakly mixing discrete dynamical systems, Chaos, Soliton. Fract., 2007, 32(2), 604-608.
Google Scholar
|
[17]
|
R. Li, T. Lu and A. Waseem, Sensitivity and Transitivity of Systems Satisfying the Large Deviations Theorem in a Sequence, Int. J. Bifurcation and Chaos, 2019 29(9), 1950125. doi: 10.1142/S0218127419501256
CrossRef Google Scholar
|
[18]
|
R. Li, H. Wang and Y. Zhao, Kato's chaos in duopoly games, Chaos, Soliton. Fract., 2016, 84, 69-72. doi: 10.1016/j.chaos.2016.01.006
CrossRef Google Scholar
|
[19]
|
T. Lu and G. Chen, Proximal and syndetically properties in nonautonomous discrete systems, J. Appl. Anal. Comput., 2017, 7(1), 92-101.
Google Scholar
|
[20]
|
T. Lu, A. Waseem and X. Tang, Distributional Chaoticity of $C_{0}$-Semigroup on a Frechet Space, Symmetry, 2019, 11(3), 345. doi: 10.3390/sym11030345
CrossRef Google Scholar
|
[21]
|
T. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 1975, 82(10), 985-992. doi: 10.1080/00029890.1975.11994008
CrossRef Google Scholar
|
[22]
|
E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 1951, 71, 152-182. doi: 10.1090/S0002-9947-1951-0042109-4
CrossRef Google Scholar
|
[23]
|
Y. Oono and M. Kohmoto, Discrete model of chemical turbulence, Phys. Rev. Lett., 1985, 55(27), 2927-2931. doi: 10.1103/PhysRevLett.55.2927
CrossRef Google Scholar
|
[24]
|
B. Schweizer and J. Smital, Measure of chaos and a spectral decomposition of dynamical systems of interval, Trans. Amer. Math. Soc., 1994, 344, 737-754. doi: 10.1090/S0002-9947-1994-1227094-X
CrossRef Google Scholar
|
[25]
|
L. Snoha, Dense chaos, Comment. Math. Univ. Carolin., 1992, 33(4), 747-752.
Google Scholar
|
[26]
|
P. Sharma and A. Nagar, Inducing sensitivity on hyperspaces, Topol. Appl., 2010, 157(13), 2052-2058. doi: 10.1016/j.topol.2010.05.002
CrossRef Google Scholar
|
[27]
|
X. Tang, G. Chen and T. Lu, Some iterative properties of $\mathcal{F}$-chaos in nonautonomous discrete systems, Entropy, 2018, 20, 188. doi: 10.3390/e20030188
CrossRef Google Scholar
|
[28]
|
M. Vellekoop and R. Berglund, On intervals, transitivity = chaos, Amer. Math. Monthly, 1994, 101(4), 353-355.
Google Scholar
|
[29]
|
L. Wang, G. Huang and S. Huan, Distributional chaos in a sequence, Nonlinear Anal., 2007, 67, 2131-2136. doi: 10.1016/j.na.2006.09.005
CrossRef Google Scholar
|
[30]
|
L. Wang, J. Liang and Z. Chu, Weakly mixing property and chaos, Arch. Der Math., 2017, 109, 83-89. doi: 10.1007/s00013-017-1044-1
CrossRef Google Scholar
|
[31]
|
X. Wu, Y. Luo, L. Wang and J. Liang, $(\mathcal{F}_{1}, \mathcal{F}_{2})$-chaos and sensitivity for time-varying discrete systems, U.P.B. Sci. Bull., Series A., 2019, 81(1), 153-160.
Google Scholar
|
[32]
|
X. Wu, X. Ma, G. Chen and T. Lu, A note on the sensitivity of semiflows, Topol. Appl., 2020, 271, 107046. doi: 10.1016/j.topol.2019.107046
CrossRef Google Scholar
|
[33]
|
X. Wu and J. Wang, A remark on accessibility, Chaos, Soliton. Fract., 2016, 91, 115-117. doi: 10.1016/j.chaos.2016.05.015
CrossRef Google Scholar
|
[34]
|
X. Wu and X. Wang, On the iteration properties of large deviations theorem, Int. J. Bifurcation and Chaos, 2016, 26(3), 1650054. doi: 10.1142/S0218127416500541
CrossRef Google Scholar
|
[35]
|
X. Wu, X. Zhang and X. Ma, Various shadowing in linear dynamical systems, Int. J. Bifurcation and Chaos, 2019, 29(3), 1950042. doi: 10.1142/S0218127419500421
CrossRef Google Scholar
|
[36]
|
Y. Wang, G. Wei and W. Campbell, Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems, Topol. Appl., 2009, 156(4), 803-811. doi: 10.1016/j.topol.2008.10.014
CrossRef Google Scholar
|
[37]
|
X. Zhang, X. Wu, Y. Luo and X. Ma, A remark on limit shadowing for hyperbolic iterated function systems, U. P. B. Sci. Bull., Ser. A, 2019, 81(3), 139-146.
Google Scholar
|