2020 Volume 10 Issue 6
Article Contents

Risong Li, Tianxiu Lu, Guanrong Chen, Xiaofang Yang. FURTHER DISCUSSION ON KATO'S CHAOS IN SET-VALUED DISCRETE SYSTEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2491-2505. doi: 10.11948/20190388
Citation: Risong Li, Tianxiu Lu, Guanrong Chen, Xiaofang Yang. FURTHER DISCUSSION ON KATO'S CHAOS IN SET-VALUED DISCRETE SYSTEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2491-2505. doi: 10.11948/20190388

FURTHER DISCUSSION ON KATO'S CHAOS IN SET-VALUED DISCRETE SYSTEMS

  • Corresponding author: Email address: lubeeltx@163.com (T. Lu) 
  • Fund Project: This work was funded by the Opening Project of Artificial Intelligence Key Laboratory of Sichuan Province (2018RZJ03), the Opening Project of Bridge Non-destruction Detecting and Engineering Computing Key Laboratory of Sichuan Province (2018QZJ03), the Opening Project of Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things (2020WZJ01), and the Scientific Research Project of Sichuan University of Science and Engineering (2020RC24)
  • For a compact metric space $ Y $ and a continuous map $ g:Y\rightarrow Y $, the collective accessibility and collectively Kato chaotic of the dynamical system $ (Y, g) $ were defined. The relations between topologically weakly mixing and collective accessibility, or strong accessibility, or strongly Kato chaos were studied. Some common properties of $ g $ and $ \overline{g} $ were given. Where $ \overline{g}: \kappa(Y)\rightarrow \kappa(Y) $ is defined as $ \overline{g}(B) = g(B) $ for any $ B\in\kappa(Y) $, and $ \kappa(Y) $ is the collection of all nonempty compact subsets of $ Y $. Moreover, it is proved that $ g $ is collectively accessible (or strongly accessible) if and only if $ \overline{g} $ in $ w^{e} $-topology is collectively accessible (or strongly accessible).
    MSC: 37B40, 37D45, 54H20
  • 加载中
  • [1] J. Auslander and J. A. Yorke, Interval maps, factors of maps and chaos, Tohoku math. J., 1980, 32(2), 177-188. doi: 10.2748/tmj/1178229634

    CrossRef Google Scholar

    [2] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.

    Google Scholar

    [3] J. Banks, Chaos for induced hyperspace maps, Chaos, Soliton. Fract., 2005, 25(3), 681-685.

    Google Scholar

    [4] M. Barge and J. Martin, Chaos, periodicity and snakelike continua, Trans. Amer. Math. Soc., 1985, 289, 355-365. doi: 10.1090/S0002-9947-1985-0779069-7

    CrossRef Google Scholar

    [5] J. R. Chazottes and B. FernSndez, Dynamics of coupled map lattices and of related spatially extended systems, Springer. Berlin. Heidelberg, 2005.

    Google Scholar

    [6] J. S. Cánovas and M. R. Marín, Chaos on MPE-sets of duopoly games, Chaos, Soliton. Fract., 2004, 19(1), 179-183.

    Google Scholar

    [7] N. Deǧirmenci and Koçak Ş, Chaos in product maps, Turk. J. Math., 2010, 34(4), 593-600.

    Google Scholar

    [8] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison Wesley, New York. USA, 1989.

    Google Scholar

    [9] J. L. García Guirao and M. Lampart, Chaos of a coupled lattice system related with Belusov-Zhabotinskii reaction, J. Math. Chem., 2010, 48, 159-164. doi: 10.1007/s10910-009-9647-9

    CrossRef Google Scholar

    [10] R. Gu, Kato's chaos in set-valued discrete systems, Chaos, Soliton. Fract., 2007, 31(3), 765-771.

    Google Scholar

    [11] R. Heriberto, Robinson's chaos in set valued discrete systems, Chaos, Soliton. Fract., 2005, 25(1), 33-42.

    Google Scholar

    [12] R. Heriberto, A note on transitivity in set valued discrete systems, Chaos, Soliton. Fract., 2003, 17(1), 99-104.

    Google Scholar

    [13] D. Kwietniak and P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos, Soliton. Fract., 2007, 33(1), 76-86.

    Google Scholar

    [14] H. Kato, Everywhere chaotic homeomorphisms on manifields and $k$-dimensional Menger manifolds, Topol. Appl., 1996, 72(1), 1-17. doi: 10.1016/0166-8641(96)00008-9

    CrossRef Google Scholar

    [15] S. Kolyada and L. Snoha, Some aspects of topological transitivity-a survey, Grazer Math. Ber., 1997, 334, 3-35.

    Google Scholar

    [16] G. Liao, X. Ma and L. Wang, Individual chaos implies collective chaos for weakly mixing discrete dynamical systems, Chaos, Soliton. Fract., 2007, 32(2), 604-608.

    Google Scholar

    [17] R. Li, T. Lu and A. Waseem, Sensitivity and Transitivity of Systems Satisfying the Large Deviations Theorem in a Sequence, Int. J. Bifurcation and Chaos, 2019 29(9), 1950125. doi: 10.1142/S0218127419501256

    CrossRef Google Scholar

    [18] R. Li, H. Wang and Y. Zhao, Kato's chaos in duopoly games, Chaos, Soliton. Fract., 2016, 84, 69-72. doi: 10.1016/j.chaos.2016.01.006

    CrossRef Google Scholar

    [19] T. Lu and G. Chen, Proximal and syndetically properties in nonautonomous discrete systems, J. Appl. Anal. Comput., 2017, 7(1), 92-101.

    Google Scholar

    [20] T. Lu, A. Waseem and X. Tang, Distributional Chaoticity of $C_{0}$-Semigroup on a Frechet Space, Symmetry, 2019, 11(3), 345. doi: 10.3390/sym11030345

    CrossRef Google Scholar

    [21] T. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 1975, 82(10), 985-992. doi: 10.1080/00029890.1975.11994008

    CrossRef Google Scholar

    [22] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 1951, 71, 152-182. doi: 10.1090/S0002-9947-1951-0042109-4

    CrossRef Google Scholar

    [23] Y. Oono and M. Kohmoto, Discrete model of chemical turbulence, Phys. Rev. Lett., 1985, 55(27), 2927-2931. doi: 10.1103/PhysRevLett.55.2927

    CrossRef Google Scholar

    [24] B. Schweizer and J. Smital, Measure of chaos and a spectral decomposition of dynamical systems of interval, Trans. Amer. Math. Soc., 1994, 344, 737-754. doi: 10.1090/S0002-9947-1994-1227094-X

    CrossRef Google Scholar

    [25] L. Snoha, Dense chaos, Comment. Math. Univ. Carolin., 1992, 33(4), 747-752.

    Google Scholar

    [26] P. Sharma and A. Nagar, Inducing sensitivity on hyperspaces, Topol. Appl., 2010, 157(13), 2052-2058. doi: 10.1016/j.topol.2010.05.002

    CrossRef Google Scholar

    [27] X. Tang, G. Chen and T. Lu, Some iterative properties of $\mathcal{F}$-chaos in nonautonomous discrete systems, Entropy, 2018, 20, 188. doi: 10.3390/e20030188

    CrossRef Google Scholar

    [28] M. Vellekoop and R. Berglund, On intervals, transitivity = chaos, Amer. Math. Monthly, 1994, 101(4), 353-355.

    Google Scholar

    [29] L. Wang, G. Huang and S. Huan, Distributional chaos in a sequence, Nonlinear Anal., 2007, 67, 2131-2136. doi: 10.1016/j.na.2006.09.005

    CrossRef Google Scholar

    [30] L. Wang, J. Liang and Z. Chu, Weakly mixing property and chaos, Arch. Der Math., 2017, 109, 83-89. doi: 10.1007/s00013-017-1044-1

    CrossRef Google Scholar

    [31] X. Wu, Y. Luo, L. Wang and J. Liang, $(\mathcal{F}_{1}, \mathcal{F}_{2})$-chaos and sensitivity for time-varying discrete systems, U.P.B. Sci. Bull., Series A., 2019, 81(1), 153-160.

    Google Scholar

    [32] X. Wu, X. Ma, G. Chen and T. Lu, A note on the sensitivity of semiflows, Topol. Appl., 2020, 271, 107046. doi: 10.1016/j.topol.2019.107046

    CrossRef Google Scholar

    [33] X. Wu and J. Wang, A remark on accessibility, Chaos, Soliton. Fract., 2016, 91, 115-117. doi: 10.1016/j.chaos.2016.05.015

    CrossRef Google Scholar

    [34] X. Wu and X. Wang, On the iteration properties of large deviations theorem, Int. J. Bifurcation and Chaos, 2016, 26(3), 1650054. doi: 10.1142/S0218127416500541

    CrossRef Google Scholar

    [35] X. Wu, X. Zhang and X. Ma, Various shadowing in linear dynamical systems, Int. J. Bifurcation and Chaos, 2019, 29(3), 1950042. doi: 10.1142/S0218127419500421

    CrossRef Google Scholar

    [36] Y. Wang, G. Wei and W. Campbell, Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems, Topol. Appl., 2009, 156(4), 803-811. doi: 10.1016/j.topol.2008.10.014

    CrossRef Google Scholar

    [37] X. Zhang, X. Wu, Y. Luo and X. Ma, A remark on limit shadowing for hyperbolic iterated function systems, U. P. B. Sci. Bull., Ser. A, 2019, 81(3), 139-146.

    Google Scholar

Article Metrics

Article views(2951) PDF downloads(408) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint