2020 Volume 10 Issue 6
Article Contents

Yuexin Yan, Zhengxin Zhou. RESEARCH ON THE COMPOSITION CENTER OF A CLASS OF RIGID DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2506-2520. doi: 10.11948/20190391
Citation: Yuexin Yan, Zhengxin Zhou. RESEARCH ON THE COMPOSITION CENTER OF A CLASS OF RIGID DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2506-2520. doi: 10.11948/20190391

RESEARCH ON THE COMPOSITION CENTER OF A CLASS OF RIGID DIFFERENTIAL SYSTEMS

  • In this paper, we answer the question: under what conditions a class of rigid differential systems have a composition center. We give the sufficient and necessary conditions for these systems to have a center at origin point. At the same time, we give the formula of focal values and the highest order of fine focus.
    MSC: 34C07, 34C05, 34C25, 37G15
  • 加载中
  • [1] A. Algaba and M. Reyes, Computing center conditions for vector fields with constant angular speed, J. Comput. Appl. Math., 2003, 154(1), 143-159.

    Google Scholar

    [2] A. Algaba, M. Reyes and A. Bravo, Uniformly isochronous quintic planar vector fields, Proceedings of the Equadiff'99, Berlin, 1999.

    Google Scholar

    [3] M. A. M. Alwash, Periodic solutions of Abel differential equations, J. Math. Anal. Appl., 2007, 329, 1161-1169. doi: 10.1016/j.jmaa.2006.07.039

    CrossRef Google Scholar

    [4] M. A. M. Alwash, Composition conditions for two-dimensional polynomial systems, Differ. Equ. Appl., 2013, 5(1), 1-12.

    Google Scholar

    [5] M. A. M. Alwash, On the center conditions of certain cubic systems, Proc. Amer. Math. Soc., 1998, 126, 3335-3336. doi: 10.1090/S0002-9939-98-04715-7

    CrossRef Google Scholar

    [6] M. A. M. Alwash, The composition conjecture for Abel equation, Expos. Math., 2009, 27, 241-250. doi: 10.1016/j.exmath.2009.02.002

    CrossRef Google Scholar

    [7] M. A. M. Alwash and N. G. Lloyd, Non-autonomous equations related to polynomial two-dimensional systems, Proc. Roy. Soc. Edinburgh, 1987, 105, 129-152. doi: 10.1017/S0308210500021971

    CrossRef Google Scholar

    [8] V. V. Amel'kin and A. E. Rudenok, Centers and isochronous centers of Liénard systems, Differ. Uravn., 2019, 55(3), 294-303.

    Google Scholar

    [9] J. C. Artés, J. Itikawab and J. Llibre, Uniform isochronous cubic and quartic centers, J. Comput. Appl. Math., 2017, 313, 448-453. doi: 10.1016/j.cam.2016.09.018

    CrossRef Google Scholar

    [10] A. Cima, A. Gasull and F. Manosas, Centers for trigonometric Abel equations, Qual. Theory Dyn. Syst., 2012, 11, 19-37. doi: 10.1007/s12346-011-0054-9

    CrossRef Google Scholar

    [11] A. Cima, A. Gasull and F. Ma$\tilde{n}$osas, A simple solution of some composition conjectures for Abel equations, J. Math. Anal. Appl., 2013, 398, 477-486. doi: 10.1016/j.jmaa.2012.09.006

    CrossRef Google Scholar

    [12] R. Conti, Uniformly isochronous centers of polynomial systems in R$^2$, in: Lecture Notes in Pure and Appl. Math., 1994, 152, 21-31.

    Google Scholar

    [13] J. Devlin, N. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations, J. Differ. Equ., 1998, 147, 435-454;, , doi: 10.1006/jdeq.1998.3420

    CrossRef Google Scholar

    [14] A. Gasull, R. Prohens and J. Torregrosa, Limit cycles of rigid cubic systems, J. Math. Anal. Appl., 2005, 304, 391-404.

    Google Scholar

    [15] A. Gasull and J. Torregrosa, Exact number of limit cycles for a family of rigid systems, Proc. Amer. Math. Soc., 2005, 133, 751-758.

    Google Scholar

    [16] J. Llibre, R. Ramírez, V. Ramírez and N. Sadovskaia, Centers and uniform isochronous centers of planar polynomial differential systems, J. Dyn. Diff. Equ., 2018, 30, 1295-1310. doi: 10.1007/s10884-018-9672-0

    CrossRef Google Scholar

    [17] N. G. Lloyd and J. M. Pearson, Computing centre conditions for certain cubic systems, J. Comput. Appl. Math., 1992, 40, 323-336. doi: 10.1016/0377-0427(92)90188-4

    CrossRef Google Scholar

    [18] V. I. Mironenko and V. V. Mironenko, Perturbations of linear differential systems that do not change the Poincaré map, Probl. Fiz. Mat. Tekh., 2017, 30(1), 54-58.

    Google Scholar

    [19] A. P. Sadovskii, Center-focus problem for analytic systems with nonzero linear part, Differ. Uravn., 2017, 53(10), 1413-1417.

    Google Scholar

    [20] J. Xu and Z. Lu, Sufficient and necessary center conditions for the Poincaré systems $P(2, n) (n\leq 5)$, J. Appl. Math., 2011, 762762, 18.

    Google Scholar

    [21] Z. Zhou, The Poincar$\acute{e}$ center-focus problem for a class of higher order polynomial differential systems, Math. Meth. Appl. Sci., 2019, DOI: 10.1002/mma.5475,1-15.

    Google Scholar

    [22] Z. Zhou, On the center-focus problem for a family of high-order polynomial differential systems, J. Dyn. Differ. Equ., 2020, 32, 393-418. doi: 10.1007/s10884-019-09735-4

    CrossRef Google Scholar

    [23] Z. Zhou and V. G. Romanovski, The center problem and the composition condition for a family of quartic differential systems, Electron. J. Qual. Theory. Differ. Equ., 2018, 15, 1-17.

    Google Scholar

Article Metrics

Article views(2524) PDF downloads(334) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint