[1]
|
R. Agarwal, S. Hristova and D. O'Regan, Non-instantaneous Impulses in Differential Equations, Springer, New York, 2017.
Google Scholar
|
[2]
|
R. Agarwal, D. O'Regan and S. Hristova, Stability by Lyapunov functions of nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 2017, 53, 147–168. doi: 10.1007/s12190-015-0961-z
CrossRef Google Scholar
|
[3]
|
Z. Bai, X. Dong and C. Yin, Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions, Bound. Value Probl., 2016, 63, 1–11.
Google Scholar
|
[4]
|
G. Bonanno and B.D. Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 2008, 343, 1166–1176. doi: 10.1016/j.jmaa.2008.01.049
CrossRef Google Scholar
|
[5]
|
M. Chipot, Elements of Nonlinear Analysis, Birkh$\ddot{a}$user, 2000.
Google Scholar
|
[6]
|
K. Chang, Methods in Nonlinear Analysis, in: Springer Monogr. Math., Springer-Verlag, Berlin, 2005.
Google Scholar
|
[7]
|
V. Colao, L. Muglia and X. Hong, Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay, Ann. Mat. Pura Appl., 2016, 195, 697–716. doi: 10.1007/s10231-015-0484-0
CrossRef Google Scholar
|
[8]
|
E. Hern$\acute{a}$ndez and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 2013, 141, 1641–1649.
Google Scholar
|
[9]
|
J. Henderson and R. Luca, Systems of Riemann-Liouville fractional equations with multi-point boundary conditions, Applied Mathematics and Computation., 2017, 309, 303–323. doi: 10.1016/j.amc.2017.03.044
CrossRef Google Scholar
|
[10]
|
B. Liang and J.J. Nieto, Variational approach to differential equations with not-instantaneous impulses, Appl. Mat. Lett., 2017, 73, 44–48. doi: 10.1016/j.aml.2017.02.019
CrossRef Google Scholar
|
[11]
|
M. Muslim, A. Kumar and M. Fe$\breve{c}$kan, Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, Journal of King Saud University-Science., 2018, 30, 204–213. doi: 10.1016/j.jksus.2016.11.005
CrossRef Google Scholar
|
[12]
|
R. Ma and J. Xu, Bifurcation from interval and positive solutions of a nonlinear fourth-order boundary value problem, Nonlinear Anal. Theory, 2010, 72, 113–122. doi: 10.1016/j.na.2009.06.061
CrossRef Google Scholar
|
[13]
|
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, Berlin, 1989.
Google Scholar
|
[14]
|
J. J. Nieto and R. Rodriguez-Lopez, Periodic boundary value problem for non-lipschitzian impulsive functional differential equations, J. Math. Anal. Appl., 2006, 318, 593–610. doi: 10.1016/j.jmaa.2005.06.014
CrossRef Google Scholar
|
[15]
|
J. J. Nieto and D. O'Regan, Variational approach to impulsive differential equations. Nonlinear Analysis: Real Word Application, 2009, 10, 680–690.
Google Scholar
|
[16]
|
M. Pierri, D. O'Regan and V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 2013, 219(12), 6743–6749.
Google Scholar
|
[17]
|
P. H. Rabinowitz, Minimax methods in critical point theory with application to differential equations, Amer. Math. Soc., 1986, 65.
Google Scholar
|
[18]
|
J. Sun, H. Chen and L. Yang, Variational methods to fourth-order impulsive differential equations, J. Appl. Math. Comput., 2011, 35, 323–340. doi: 10.1007/s12190-009-0359-x
CrossRef Google Scholar
|
[19]
|
Y. Tian and J. Henderson, Three anti-periodic solutions for second-order impulsive differential inclusions via non-smooth critical point theory, Nonlinear Anal., 2012, 75, 6496–6505. doi: 10.1016/j.na.2012.07.025
CrossRef Google Scholar
|
[20]
|
Y. Tian and W. Ge, Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 2008, 51, 509–527. doi: 10.1017/S0013091506001532
CrossRef Google Scholar
|
[21]
|
Y. Tian and M. Zhang, Variational method to differential equations with instantaneous and not-instantaneous impulses, Appl. Mat. Lett., 2019, 94, 160–165. doi: 10.1016/j.aml.2019.02.034
CrossRef Google Scholar
|
[22]
|
J. Wang and X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non instantaneous impulses, J. Appl. Math. Comput., 2014, 46, 321–334. doi: 10.1007/s12190-013-0751-4
CrossRef Google Scholar
|
[23]
|
Y. Wei, Q. Song and Z. Bai, Existence and iterative method for some fourth order nonlinear boundary value problems, Appl. Math. Lett., 2019, 87, 101–107. doi: 10.1016/j.aml.2018.07.032
CrossRef Google Scholar
|
[24]
|
P. Yang, J. Wang, D. O'Regan and M. Fe$\breve{c}$kan, Inertial manifold for semi-linear non-instantaneous impulsive parabolic equations in an admissible space, Commun. Nonlinear Sci. Numer. Simul., 2019, 75, 174–195. doi: 10.1016/j.cnsns.2019.03.029
CrossRef Google Scholar
|