[1]
|
B. F. A. Baldi and P. Pansu, $l^{1}$-poincar$\acute{e}$ and sobolev inequalities for differential forms in euclidean spaces, Sci. China Math., 2019, 62, 1029–1040. doi: 10.1007/s11425-018-9498-8
CrossRef Google Scholar
|
[2]
|
H. S. A. Kilbas and J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
Google Scholar
|
[3]
|
L. Bai and B. Dai, Existence and multiplicity of solutions for an impulsive boundary value problem with a parameter via critical point theory, Math. Comput. Modelling, 2011, 53, 1844–1855. doi: 10.1016/j.mcm.2011.01.006
CrossRef Google Scholar
|
[4]
|
Z. Bai and H. Lv, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 2005, 311, 495–505. doi: 10.1016/j.jmaa.2005.02.052
CrossRef Google Scholar
|
[5]
|
E. S. D. Baleanu, K. Diethelm and et al, Fractional calculus models and numerical methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston, 2012.
Google Scholar
|
[6]
|
A. Dogan, On the existence of positive solutions for the second-order boundary value problem, Appl. Math. Lett., 2015, 49, 107–112. doi: 10.1016/j.aml.2015.05.004
CrossRef Google Scholar
|
[7]
|
D. Guo and V. Lakskmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal-Theor., 1987, 11, 623–632. doi: 10.1016/0362-546X(87)90077-0
CrossRef Google Scholar
|
[8]
|
W. Jiang, The existence of solutions to boundary value problems of fractional differential equations at resonance, Nonlinear Anal, TMA, 2011, 74, 1987–1994. doi: 10.1016/j.na.2010.11.005
CrossRef Google Scholar
|
[9]
|
F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos, 2012, 22(1250086), 1–17.
Google Scholar
|
[10]
|
H. J. K. Teng and H. Zhang, Existence and multiplicity results for fractional differential inclusions with dirichlet boundary conditions, Appl. Math. Comput., 2013, 220, 792–801.
Google Scholar
|
[11]
|
V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal., 2008, 69(10), 3337–3343. doi: 10.1016/j.na.2007.09.025
CrossRef Google Scholar
|
[12]
|
C. Ledesma and N.Nyamoradi, Impulsive fractional boundary value problem with p-laplace operator, J. Appl. Math. Comput., 2017, 55, 257–278. doi: 10.1007/s12190-016-1035-6
CrossRef Google Scholar
|
[13]
|
E. Lee and Y. Lee, Multiple positive solutions of a singular gelfand type problem for second-order impulsive differential systems, Math. Comput. Modelling, 2004, 40, 307–328. doi: 10.1016/j.mcm.2003.12.007
CrossRef Google Scholar
|
[14]
|
T. O. M. Klimek and A. Malinowska, Variational methods for the fractional sturm-liouville problem, J. Math. Analysis Appli., 2014, 416, 402–426.
Google Scholar
|
[15]
|
F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics, Springer, 1997.
Google Scholar
|
[16]
|
J. Mawhin and M. Willem, Critical point theorey and Hamiltonian systems, Springer, New York, 1989.
Google Scholar
|
[17]
|
K. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
Google Scholar
|
[18]
|
N. Nyamoradi, Existence and multiplicity of solutions for impulsive fractional differential equations, Mediterr. J. Math., 2017, 14(85).
Google Scholar
|
[19]
|
N. Nyamoradi and E. Tayyebi, Existence of solutions for a class of fractional boundary value equations with impulsive effects via critical point theory, Mediterr. J. Math., 2018, 15(79).
Google Scholar
|
[20]
|
I. Podlubny, Fractional differential equations, Academic Press, New Tork, London, Toronto, 1999.
Google Scholar
|
[21]
|
P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., Providence, 1986.
Google Scholar
|
[22]
|
A. Samoilenko and N. Perestyuk, Impulsive differential equations, World Scientific, Singapore, 1995.
Google Scholar
|
[23]
|
A. K. S.G. Samko and O. Marichev, Fractional integral and derivatives: theory and applications, Gordon and Breach, London, New York, 1993.
Google Scholar
|
[24]
|
D. Smart, Fixed point theorems, Cambridge University Press, Cambridge, 1980.
Google Scholar
|
[25]
|
Y. Tian and J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, Proceeding of the Edinburgh Mathematical Society, 2017, 60, 1021–1051. doi: 10.1017/S001309151600050X
CrossRef Google Scholar
|
[26]
|
D. B. V. Lakshmikantham and P. Simeonov, Theory of impulsive differential equations, Series Modern. Appl. Math., World Scientific, Teaneck N.J., 1989.
Google Scholar
|
[27]
|
J. Wang and H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with p-laplacian operator, Abatr. Appl. Anal., 2010, 2010, 1–12.
Google Scholar
|
[28]
|
L. L. X. Zhang and Y. Wu, The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives, Appl. Math. Comput., 2012, 218, 8526–8536.
Google Scholar
|
[29]
|
J. W. Y. Ao and W. Zou, On the existence and regularity of vector solutions for quasilinear systems with linear coupling, Sci. China Math., 2019, 62, 125–146. doi: 10.1007/s11425-017-9235-2
CrossRef Google Scholar
|
[30]
|
L. L. Y. Wang and Y. Wu, Positive solutions for a nonlocal fractional differential equation, Nonlinear Anal., 2011, 74, 3599–3605. doi: 10.1016/j.na.2011.02.043
CrossRef Google Scholar
|
[31]
|
Y. L. Y. Wang and J. Zhou, Solvability of boundary value problems for impulsive fractional differential equations via critical point theory, Mediterr. J. Math., 2016, 13, 4845–4866. doi: 10.1007/s00009-016-0779-4
CrossRef Google Scholar
|
[32]
|
F. J. Y. Zhou and J. Li, Existence and uniqueness for p-type fractional neutral differential equations, Nonlinear Anal., 2009, 71, 2724–2733. doi: 10.1016/j.na.2009.01.105
CrossRef Google Scholar
|
[33]
|
E. Zeidler, Nonlinear functional analysis and its applications, Springer, 1985.
Google Scholar
|
[34]
|
Y. Zhou, Basic Theory of fractional differential equations, World Scientific, Singapore, 2014.
Google Scholar
|