[1]
|
A. Algabaa, M. C. Dom$\acute{i}$nguez-Moreno, M. Merinoa and A. J. Rodr$\acute{i}$guez-Luis, Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system, Commun Nonlinear Sci Numer Simulat, 2016, 30, 328-343. doi: 10.1016/j.cnsns.2015.06.034
CrossRef Google Scholar
|
[2]
|
R. I. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Funct. Anal. Appl., 1975, 9, 144-145. doi: 10.1007/BF01075453
CrossRef Google Scholar
|
[3]
|
E. A. Butcher, Normal forms for high co-dimension bifurcations of nonlinear time-periodic systems with nonsemisimple eigenvalues, Nonlinear Dynam, 2002, 30, 29-53. doi: 10.1023/A:1020340116695
CrossRef Google Scholar
|
[4]
|
S. A. Campbell and Y. Yuan, Zero singularities of codimension two and three in delay differential equations, Nonlinearity, 2008, 21, 2671-2691.
Google Scholar
|
[5]
|
Y. Choquet-Bruhat, C. Dewitt-Morette and M. Dillard-Bleick, Analysis, Manifolds and Physics, North Holland, Amsterdam, 1977.
Google Scholar
|
[6]
|
S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurca- 476 tion of Planar Vector Fields, Cambridge University Press, Cambridge, 1994, 477.
Google Scholar
|
[7]
|
T. Dong and X. Liao, Bogdanov-Takens bifurcation in a tri-neuron BAM neural network model with multiple delays, Nonlinear Dynam, 2013, 71, 583-595. doi: 10.1007/s11071-012-0683-9
CrossRef Google Scholar
|
[8]
|
F. Dumortier and S. Ibáñez, Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields, J. Differ Equations, 1996, 127, 590-647. doi: 10.1006/jdeq.1996.0085
CrossRef Google Scholar
|
[9]
|
T. Faria and L. T. Magalhães, Normal form for retarded functional differential equations and applications to Bogdanov Takens singularity, J. Differ Equations, 1995, 122, 201-224. doi: 10.1006/jdeq.1995.1145
CrossRef Google Scholar
|
[10]
|
E. Freire, E. Garmero, A. J. Rodriguez-Luis and A. Algaba, A note on the triple zero linear degeneracy: Normal forms, dynamical and bifurcation behaviour of an unfolding, Int. J. Bifurcat. Chaos, 2002, 12, 2799-2820. doi: 10.1142/S0218127402006175
CrossRef Google Scholar
|
[11]
|
X. He, C. Li and Y. Shu, Triple-zero bifurcation in van der Pol's oscillator with delayed feedback, Commun Nonlinear Sci Numer Simulat, 2012, 17, 5229-5239. doi: 10.1016/j.cnsns.2012.05.001
CrossRef Google Scholar
|
[12]
|
J. Jiang and Y. Song, Delay-induced triple-zero bifurcation in a delayed Leslie-type predator-prey model with additive allee effect, Int. J. Bifurcat. Chaos, 2016, 26, 1650117. doi: 10.1142/S0218127416501170
CrossRef Google Scholar
|
[13]
|
J. Jiang and Y. Song, Bogdanov-Takens bifurcation in an oscillator with negative damping and delayed position feedback, Appl. Math. Model, 2013, 37, 8091-8105. doi: 10.1016/j.apm.2013.03.034
CrossRef Google Scholar
|
[14]
|
W. Jiang and Y. Yuan, Bogdanov-Takens singularity in Van der Pol¡'s oscillator with delayed feedback, Physica D, 2007, 227, 149-161. doi: 10.1016/j.physd.2007.01.003
CrossRef Google Scholar
|
[15]
|
Y. A. Kuznetsov, Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, Int. J. Bifurcat. Chaos, 2005, 11, 3535-3546.
Google Scholar
|
[16]
|
X. Liu, Zero singularity of codimension two or three in a four-neuron BAM neural network model with multiple delays, Nonlinear Dynam, 2014, 77, 1783-1794. doi: 10.1007/s11071-014-1417-y
CrossRef Google Scholar
|
[17]
|
V. G. LeBlanc, Realizability of the normal form for the triple-zero nilpotency in a class of delayed nonlinear oscillators, J. Differ Equations, 2013, 254, 637-647. doi: 10.1016/j.jde.2012.09.008
CrossRef Google Scholar
|
[18]
|
G. Peng and Y. Jiang, Practical computation of normal forms of the Bogdanov-Takens bifurcation, Nonlinear Dynam, 2011, 66, 99-132. doi: 10.1007/s11071-010-9914-0
CrossRef Google Scholar
|
[19]
|
Z. Qiao, X. Liu and D. Zhu, Bifurcation in delay differential systems with triple-zero singularity, Chin. Ann. Math. Ser. A., 2010, 31, 59-70. doi: 10.1007/s11401-008-0421-2
CrossRef Google Scholar
|
[20]
|
Z. Song and J. Xu, Codimension-two bursting analysis in the delayed neural system with external stimulations, Nonlinear Dynam, 2012, 67, 309-328. doi: 10.1007/s11071-011-9979-4
CrossRef Google Scholar
|
[21]
|
F. Takens, Singularities of vector fields, Publ. Math. IHES, 1974, 43, 47-100. doi: 10.1007/BF02684366
CrossRef Google Scholar
|
[22]
|
X. Wu and L. Wang, Simple-zero and double-zero singularities of a Kaldor-Kalecki model of business cycles with delay, Discrete Dyn. Nat. Soc., 2009, 1-29.
Google Scholar
|
[23]
|
P. Yu and Y. Yuan, The simplest normal forms associated with a triple zero eigenvalue of indices one and two, Nonlinear Analysis, 2001, 47, 1105-1116. doi: 10.1016/S0362-546X(01)00250-4
CrossRef Google Scholar
|
[24]
|
P. Yu and K. Huseyin, Static and dynamic bifurcations associated with a double zero eigenvalues, Dyn. Stab. Syst., 1986, 1, 73-86.
Google Scholar
|