[1]
|
C. Chen and Y. Kang, Sliding motion and global dynamics of a Filippov fire-blight model with economic thresholds, Nonlinear Anal.-Real World Appl., 2018, 39, 492-519. doi: 10.1016/j.nonrwa.2017.08.002
CrossRef Google Scholar
|
[2]
|
T. Chen, L. Huang, P. Yu and W Huang, Bifurcation of limit cycles at infinity in piecewise polynomial systems, Nonlinear Anal.-Real World Appl., 2018, 41, 82-106. doi: 10.1016/j.nonrwa.2017.10.003
CrossRef Google Scholar
|
[3]
|
Z. Cai, J. Huang and L. Huang, Periodic orbit analysis for the delayed Filippov system, Proc. Amer. Math. Soc., 2018, 146 (11), 4667-4682. doi: 10.1090/proc/13883
CrossRef Google Scholar
|
[4]
|
Z. Cai, J. Huang and L. Huang, Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks, Discrete Contin. Dyn. Syst.-Ser. B, 2017, 22(9), 3591-3614. doi: 10.3934/dcdsb.2017181
CrossRef Google Scholar
|
[5]
|
N. Chong, Modeling avian influenza using Filippov systems to determine culling of infected birds and quarantine, Nonlinear Anal.-Real World Appl., 2015, 24, 196-218. doi: 10.1016/j.nonrwa.2015.02.007
CrossRef Google Scholar
|
[6]
|
M. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting, J. Appl. Ecol., 1994, 31(3), 413-427. doi: 10.2307/2404439
CrossRef Google Scholar
|
[7]
|
X. Chen and L. Huang, A Filippov system describing the effect of prey refuge use on a ratio-dependent predator-prey model, J. Math. Anal. Appl., 2015, 428(2), 817-837. doi: 10.1016/j.jmaa.2015.03.045
CrossRef Google Scholar
|
[8]
|
A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.
Google Scholar
|
[9]
|
S. Fishman, R. Marcus, H. Talpaz, et al, Epidemiological and economic models for spread and control of citrus tristeza virus disease, Phytoparasitica, 1983, 11(1), 39-49. doi: 10.1007/BF02980710
CrossRef Google Scholar
|
[10]
|
S. Fishman and R. Marcus, A model for spread of plant disease with periodic removals, J. Math. Biol., 1984, 21(2), 149-158. doi: 10.1007/BF00277667
CrossRef Google Scholar
|
[11]
|
R. W. Gibson and V. Aritua, The perspective of sweetpotato chlorotic stunt virus in sweetpotato production in Africa: a review, 2002.
Google Scholar
|
[12]
|
Z. Guo, L. Huang and X. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 2013, 9(1), 97-110.
Google Scholar
|
[13]
|
C. Huang, Z. Yang, T. Yi and X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Differ. Equ., 2014, 256(7), 2101-2114. doi: 10.1016/j.jde.2013.12.015
CrossRef Google Scholar
|
[14]
|
H. Hu, X. Yuan, L. Huang and C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng, 2019, 16(5), 5729-5749. doi: 10.3934/mbe.2019286
CrossRef Google Scholar
|
[15]
|
C. Huang, Y. Qiao, L. Huang and R. P. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Adv. Differ. Equ., 2018, 2018(1), 186. doi: 10.1186/s13662-018-1589-8
CrossRef Google Scholar
|
[16]
|
M. Han, H. Sun and Z. Balanov, Upper estimates for the number of periodic solutions to multi-dimensional systems, J. Differ. Equ., 2019, 266(12), 8281-8293. doi: 10.1016/j.jde.2018.12.034
CrossRef Google Scholar
|
[17]
|
M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 2017, 7(2), 788-794.
Google Scholar
|
[18]
|
H. Hu and X. Zou, Existence of an extinction wave in the fisher equation with a shifting habitat, Proc. Amer. Math. Soc., 2017, 145(11), 4763-4771. doi: 10.1090/proc/13687
CrossRef Google Scholar
|
[19]
|
F. Jiang and M. Han, Qualitative analysis of crossing limit cycles in discontinuous Liénard-type differential systems, Journal of Nonlinear Modeling and Analysis, 2019, 1(4), 527-543.
Google Scholar
|
[20]
|
L. Sheng and M. Han, Bifurcation of limit cycles from a compound loop with five saddles, J. Appl. Anal. Comput., 2019, 9(6), 2482-2495.
Google Scholar
|
[21]
|
R. N. Strange and P. R. Scott, Plant Disease: A threat to global food security, Annu. Rev. Phytopathol., 2005, 43(1), 83-116. doi: 10.1146/annurev.phyto.43.113004.133839
CrossRef Google Scholar
|
[22]
|
Y. Tian, M. Han and F. Xu, Bifurcations of small limit cycles in Liénard systems with cubic restoring terms, J. Differ. Equ., 2019, 267(3), 1561-1580. doi: 10.1016/j.jde.2019.02.018
CrossRef Google Scholar
|
[23]
|
H. R. Thieme and J. A. P. Heesterbeek, How to estimate the efficacy of periodic control of an infectious plant disease, Math. Biosci., 1989, 93(1), 0-29.
Google Scholar
|
[24]
|
S. Tang, Y. Xiao and R. A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simul., 2010, 80(5), 894-921. doi: 10.1016/j.matcom.2009.10.004
CrossRef Google Scholar
|
[25]
|
M. Vurro, B. Bonciani and G. Vannacci, Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences, Food Security, 2010, 2(2), 113-132. doi: 10.1007/s12571-010-0062-7
CrossRef Google Scholar
|
[26]
|
J. Wang, F. Zhang and L. Wang, Equilibrium, pseudoequilibrium and sliding-mode heteroclinic orbit in a Filippov-type plant disease model, Nonlinear Anal.-Real World Appl., 2016, 31, 308-324. doi: 10.1016/j.nonrwa.2016.01.017
CrossRef Google Scholar
|
[27]
|
A. Wang and Y. Xiao, A Filippov system describing media effects on the spread of infectious diseases, Nonlinear Anal.-Hybrid Syst., 2014, 11(1), 84-97.
Google Scholar
|
[28]
|
A. Wang and Y. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination, Int. J. Bifurcation Chaos, 2013, 23(8), 1350144. doi: 10.1142/S0218127413501447
CrossRef Google Scholar
|
[29]
|
J. Wang, X. Chen and L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 2019, 469(1), 405-427. doi: 10.1016/j.jmaa.2018.09.024
CrossRef Google Scholar
|
[30]
|
J. Wang, C. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal.-Hybrid Syst., 2019, 33, 162-178. doi: 10.1016/j.nahs.2019.03.004
CrossRef Google Scholar
|
[31]
|
J. Wang, S. He and L. Huang, Limit cycles induced by threshold nonlinearity in planar piecewise linear systems of node-focus or node-center type, Int. J. Bifur. Chaos, 2020, DOI:10.1142/S0218127420501606.
CrossRef Google Scholar
|
[32]
|
R. Yuan and Z. Wang, A HIV infection model with periodic multidrug therapy, Journal of Nonlinear Modeling and Analysis, 2019, 1(4), 573-593.
Google Scholar
|
[33]
|
C. Yang, L. Huang and F. Li, Exponential synchronization control of discontinuous nonautonomous networks and autonomous coupled networks, Complexity, 2028, 2018, 1-10.
Google Scholar
|
[34]
|
T. Zhao and Y. Xiao, Non-smooth plant disease models with economic thresholds, Math. Biosci., 2013, 241(1), 34-48.
Google Scholar
|