2020 Volume 10 Issue 5
Article Contents

Lihong Huang, Huili Ma, Jiafu Wang, Chuangxia Huang. GLOBAL DYNAMICS OF A FILIPPOV PLANT DISEASE MODEL WITH AN ECONOMIC THRESHOLD OF INFECTED-SUSCEPTIBLE RATIO[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2263-2277. doi: 10.11948/20190409
Citation: Lihong Huang, Huili Ma, Jiafu Wang, Chuangxia Huang. GLOBAL DYNAMICS OF A FILIPPOV PLANT DISEASE MODEL WITH AN ECONOMIC THRESHOLD OF INFECTED-SUSCEPTIBLE RATIO[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2263-2277. doi: 10.11948/20190409

GLOBAL DYNAMICS OF A FILIPPOV PLANT DISEASE MODEL WITH AN ECONOMIC THRESHOLD OF INFECTED-SUSCEPTIBLE RATIO

  • Corresponding author: Jiafu Wang. Email address:jfwangmath@163.com(J. Wang) 
  • Fund Project: The authors were supported by the National Natural Science Foundation of China (Grant Nos. 11771059, 11301551), and the Natural Science Foundation of Hunan Province, China(Grant No. 2017JJ3525)
  • This paper presents a Filippov plant disease model incorporating an economic threshold of infected-susceptible ratio, above which control strategies of replanting or removing are needed to be carried out. Based on the Filippov approach, we study the sliding mode dynamics and further the global dynamics. It is shown that there is a unique equilibrium, which is a disease-free equilibrium, an endemic equilibrium or a pseudo-equilibrium. Moreover, the equilibrium is proved to be globally asymptotically stable. Our results indicate that the control goal can be achieved by taking appropriate replanting and removing rate.
    MSC: 92D25, 34K20
  • 加载中
  • [1] C. Chen and Y. Kang, Sliding motion and global dynamics of a Filippov fire-blight model with economic thresholds, Nonlinear Anal.-Real World Appl., 2018, 39, 492-519. doi: 10.1016/j.nonrwa.2017.08.002

    CrossRef Google Scholar

    [2] T. Chen, L. Huang, P. Yu and W Huang, Bifurcation of limit cycles at infinity in piecewise polynomial systems, Nonlinear Anal.-Real World Appl., 2018, 41, 82-106. doi: 10.1016/j.nonrwa.2017.10.003

    CrossRef Google Scholar

    [3] Z. Cai, J. Huang and L. Huang, Periodic orbit analysis for the delayed Filippov system, Proc. Amer. Math. Soc., 2018, 146 (11), 4667-4682. doi: 10.1090/proc/13883

    CrossRef Google Scholar

    [4] Z. Cai, J. Huang and L. Huang, Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks, Discrete Contin. Dyn. Syst.-Ser. B, 2017, 22(9), 3591-3614. doi: 10.3934/dcdsb.2017181

    CrossRef Google Scholar

    [5] N. Chong, Modeling avian influenza using Filippov systems to determine culling of infected birds and quarantine, Nonlinear Anal.-Real World Appl., 2015, 24, 196-218. doi: 10.1016/j.nonrwa.2015.02.007

    CrossRef Google Scholar

    [6] M. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting, J. Appl. Ecol., 1994, 31(3), 413-427. doi: 10.2307/2404439

    CrossRef Google Scholar

    [7] X. Chen and L. Huang, A Filippov system describing the effect of prey refuge use on a ratio-dependent predator-prey model, J. Math. Anal. Appl., 2015, 428(2), 817-837. doi: 10.1016/j.jmaa.2015.03.045

    CrossRef Google Scholar

    [8] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.

    Google Scholar

    [9] S. Fishman, R. Marcus, H. Talpaz, et al, Epidemiological and economic models for spread and control of citrus tristeza virus disease, Phytoparasitica, 1983, 11(1), 39-49. doi: 10.1007/BF02980710

    CrossRef Google Scholar

    [10] S. Fishman and R. Marcus, A model for spread of plant disease with periodic removals, J. Math. Biol., 1984, 21(2), 149-158. doi: 10.1007/BF00277667

    CrossRef Google Scholar

    [11] R. W. Gibson and V. Aritua, The perspective of sweetpotato chlorotic stunt virus in sweetpotato production in Africa: a review, 2002.

    Google Scholar

    [12] Z. Guo, L. Huang and X. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 2013, 9(1), 97-110.

    Google Scholar

    [13] C. Huang, Z. Yang, T. Yi and X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Differ. Equ., 2014, 256(7), 2101-2114. doi: 10.1016/j.jde.2013.12.015

    CrossRef Google Scholar

    [14] H. Hu, X. Yuan, L. Huang and C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng, 2019, 16(5), 5729-5749. doi: 10.3934/mbe.2019286

    CrossRef Google Scholar

    [15] C. Huang, Y. Qiao, L. Huang and R. P. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Adv. Differ. Equ., 2018, 2018(1), 186. doi: 10.1186/s13662-018-1589-8

    CrossRef Google Scholar

    [16] M. Han, H. Sun and Z. Balanov, Upper estimates for the number of periodic solutions to multi-dimensional systems, J. Differ. Equ., 2019, 266(12), 8281-8293. doi: 10.1016/j.jde.2018.12.034

    CrossRef Google Scholar

    [17] M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 2017, 7(2), 788-794.

    Google Scholar

    [18] H. Hu and X. Zou, Existence of an extinction wave in the fisher equation with a shifting habitat, Proc. Amer. Math. Soc., 2017, 145(11), 4763-4771. doi: 10.1090/proc/13687

    CrossRef Google Scholar

    [19] F. Jiang and M. Han, Qualitative analysis of crossing limit cycles in discontinuous Liénard-type differential systems, Journal of Nonlinear Modeling and Analysis, 2019, 1(4), 527-543.

    Google Scholar

    [20] L. Sheng and M. Han, Bifurcation of limit cycles from a compound loop with five saddles, J. Appl. Anal. Comput., 2019, 9(6), 2482-2495.

    Google Scholar

    [21] R. N. Strange and P. R. Scott, Plant Disease: A threat to global food security, Annu. Rev. Phytopathol., 2005, 43(1), 83-116. doi: 10.1146/annurev.phyto.43.113004.133839

    CrossRef Google Scholar

    [22] Y. Tian, M. Han and F. Xu, Bifurcations of small limit cycles in Liénard systems with cubic restoring terms, J. Differ. Equ., 2019, 267(3), 1561-1580. doi: 10.1016/j.jde.2019.02.018

    CrossRef Google Scholar

    [23] H. R. Thieme and J. A. P. Heesterbeek, How to estimate the efficacy of periodic control of an infectious plant disease, Math. Biosci., 1989, 93(1), 0-29.

    Google Scholar

    [24] S. Tang, Y. Xiao and R. A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simul., 2010, 80(5), 894-921. doi: 10.1016/j.matcom.2009.10.004

    CrossRef Google Scholar

    [25] M. Vurro, B. Bonciani and G. Vannacci, Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences, Food Security, 2010, 2(2), 113-132. doi: 10.1007/s12571-010-0062-7

    CrossRef Google Scholar

    [26] J. Wang, F. Zhang and L. Wang, Equilibrium, pseudoequilibrium and sliding-mode heteroclinic orbit in a Filippov-type plant disease model, Nonlinear Anal.-Real World Appl., 2016, 31, 308-324. doi: 10.1016/j.nonrwa.2016.01.017

    CrossRef Google Scholar

    [27] A. Wang and Y. Xiao, A Filippov system describing media effects on the spread of infectious diseases, Nonlinear Anal.-Hybrid Syst., 2014, 11(1), 84-97.

    Google Scholar

    [28] A. Wang and Y. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination, Int. J. Bifurcation Chaos, 2013, 23(8), 1350144. doi: 10.1142/S0218127413501447

    CrossRef Google Scholar

    [29] J. Wang, X. Chen and L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 2019, 469(1), 405-427. doi: 10.1016/j.jmaa.2018.09.024

    CrossRef Google Scholar

    [30] J. Wang, C. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal.-Hybrid Syst., 2019, 33, 162-178. doi: 10.1016/j.nahs.2019.03.004

    CrossRef Google Scholar

    [31] J. Wang, S. He and L. Huang, Limit cycles induced by threshold nonlinearity in planar piecewise linear systems of node-focus or node-center type, Int. J. Bifur. Chaos, 2020, DOI:10.1142/S0218127420501606.

    CrossRef Google Scholar

    [32] R. Yuan and Z. Wang, A HIV infection model with periodic multidrug therapy, Journal of Nonlinear Modeling and Analysis, 2019, 1(4), 573-593.

    Google Scholar

    [33] C. Yang, L. Huang and F. Li, Exponential synchronization control of discontinuous nonautonomous networks and autonomous coupled networks, Complexity, 2028, 2018, 1-10.

    Google Scholar

    [34] T. Zhao and Y. Xiao, Non-smooth plant disease models with economic thresholds, Math. Biosci., 2013, 241(1), 34-48.

    Google Scholar

Figures(10)

Article Metrics

Article views(3358) PDF downloads(589) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint