2020 Volume 10 Issue 5
Article Contents

Pei Yu, Maoan Han, Wenjing Zhang. MULTIPLE RECURRENT OUTBREAK CYCLES IN AN AUTONOMOUS EPIDEMIOLOGICAL MODEL DUE TO MULTIPLE LIMIT CYCLE BIFURCATION[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2278-2298. doi: 10.11948/20200301
Citation: Pei Yu, Maoan Han, Wenjing Zhang. MULTIPLE RECURRENT OUTBREAK CYCLES IN AN AUTONOMOUS EPIDEMIOLOGICAL MODEL DUE TO MULTIPLE LIMIT CYCLE BIFURCATION[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2278-2298. doi: 10.11948/20200301

MULTIPLE RECURRENT OUTBREAK CYCLES IN AN AUTONOMOUS EPIDEMIOLOGICAL MODEL DUE TO MULTIPLE LIMIT CYCLE BIFURCATION

  • Author Bio: pyu@uwo.ca(P. Yu); wenjing.zhang@ttu.edu(W. Zhang)
  • Corresponding author: Maoan Han, Email address:mahan@shnu.edu.cn(M. Han) 
  • Multiple recurrent outbreak cycles have been commonly observed in infectious diseases such as measles and chicken pox. This complex outbreak dynamics in epidemiologicals is rarely captured by deterministic models. In this paper, we investigate a simple 2-dimensional SI epidemiological model and propose that the coexistence of multiple attractors attributes to the complex outbreak patterns. We first determine the conditions on parameters for the existence of an isolated center, then properly perturb the model to generate Hopf bifurcation and obtain limit cycles around the center. We further analytically prove that the maximum number of the coexisting limit cycles is three, and provide a corresponding set of parameters for the existence of the three limit cycles. Simulation results demonstrate the case with the maximum coexisting attractors, which contains one stable disease free equilibrium and two stable endemic periodic solutions separated by one unstable periodic solution. Therefore, different disease outcomes can be predicted by a single nonlinear deterministic model based on different initial data.
    MSC: 34C07, 34D45
  • 加载中
  • [1] S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani, Seasonality and the dynamics of infectious diseases, Ecol. Lett., 2006, 9(4), 467-484. doi: 10.1111/j.1461-0248.2005.00879.x

    CrossRef Google Scholar

    [2] R. M. Anderson, R. M. May, B. Anderson, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press Inc, New York, 1992.

    Google Scholar

    [3] J. L. Aron, Multiple attractors in the response to a vaccination program, Theor. Popul. Biol., 1990, 38(1), 58-67. doi: 10.1016/0040-5809(90)90003-E

    CrossRef Google Scholar

    [4] J. L. Aron, I. B. Schwartz, Seasonality and period-doubling bifurcations in an epidemic model, J. Theor. Biol., 1984, 110(4), 665-679. doi: 10.1016/S0022-5193(84)80150-2

    CrossRef Google Scholar

    [5] K. M. Bakker, M. E. Martinez-Bakker, B. Helm, T. J. Stevenson, Digital epidemiology reveals global childhood disease seasonality and the effects of immunization, Proc. National Academy of Sciences, 2016, 113(24), 6689-6694. doi: 10.1073/pnas.1523941113

    CrossRef Google Scholar

    [6] M. S. Bartlett, Measles periodicity and community size, J. Royal Statistical Soc., Series A (General), 1957, 120(1), 48-70. doi: 10.2307/2342553

    CrossRef Google Scholar

    [7] B. Bolker, B. Grenfell, B. Chaos and biological complexity in measles dynamics, Proc. R. Soc. Lond. B 251, 1993, (1330), 75-81.

    Google Scholar

    [8] B. Buonomo, N. Chitnis, A. d'Onofrio, Seasonality in epidemic models: a literature review, Ricerche di Matematica, 2017, 67(1), 1-19.

    Google Scholar

    [9] D. J. Earn, P. Rohani, B. M. Bolker, B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 2000, 287(5453), 667-670. doi: 10.1126/science.287.5453.667

    CrossRef Google Scholar

    [10] S. Ellner, B. Bailey, G. Bobashev, A. Gallant, B. Grenfell, D. Nychka, Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling, AM Naturalist, 1998, 151(5), 425-440. doi: 10.1086/286130

    CrossRef Google Scholar

    [11] S. D. Fretwell, Populations in a Seasonal Environment, Princeton University Press, Princeton, 1972.

    Google Scholar

    [12] P. Glendinning, L. P. Perry, Melnikov analysis of chaos in a simple epidemiological model, J. Math. Biol., 1997, 35(3), 359-373.

    Google Scholar

    [13] N. C. Grassly, C. Fraser, Mathematical models of infectious disease transmission, Nat. Rev. Microbiol., 2008, 6(6), 477-487. doi: 10.1038/nrmicro1845

    CrossRef Google Scholar

    [14] B. Grenfell, J. Harwood, (Meta)population dynamics of infectious diseases, Trends Ecol. Evol., 1997, 12(10), 395-399. doi: 10.1016/S0169-5347(97)01174-9

    CrossRef Google Scholar

    [15] D. E. Griffin, Immune Responses During Measles Virus Infection, Springer, Berlin, Heidelberg, 1995, 117-134.

    Google Scholar

    [16] M. Han, P. Yu, Normal forms, Melnikov functions and bifurcations of limit cycles, Vol. 181, Springer-Verlag, London, 2012.

    Google Scholar

    [17] H. W. Hethcote, P. van Den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 1991, 29(3), 271-287. doi: 10.1007/BF00160539

    CrossRef Google Scholar

    [18] S. A. Levin, B. Grenfell, A. Hastings, A. S. Perelson, Mathematical and computational challenges in population biology and ecosystems science, Science, 1997, 275(5298), 334-343. doi: 10.1126/science.275.5298.334

    CrossRef Google Scholar

    [19] W. M. Liu, H. W. Hethcote, S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 1987, 25(4), 359-380. doi: 10.1007/BF00277162

    CrossRef Google Scholar

    [20] W. M. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of sirs epidemiological models, J. Math. Biol., 1986, 23(2), 187-204. doi: 10.1007/BF00276956

    CrossRef Google Scholar

    [21] W. P. London, J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps: I. seasonal variation in contact rates, AM J. Epidemiol., 1973, 98(6), 453-468. doi: 10.1093/oxfordjournals.aje.a121575

    CrossRef Google Scholar

    [22] L. F. Olsen, W. M. Schaffer, Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics, Science, 1990, 249(4968), 499-504. doi: 10.1126/science.2382131

    CrossRef Google Scholar

    [23] L. F. Olsen, G. L. Truty, W. M. Schaffer, Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark, Theor. Popul. Biol., 1988, 33(3), 344-370.

    Google Scholar

    [24] V. E. Pitzer, C. Viboud, W. J. Alonso, T. Wilcox, C. J. Metcalf, C. A. Steiner, A. K. Haynes, B. T. Grenfell, Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the united states, PLoS Pathogens, 2015, 11(1), e1004591. doi: 10.1371/journal.ppat.1004591

    CrossRef Google Scholar

    [25] W. G. Van Panhuis, J. Grefenstette, S. Y. Jung, N. S. Chok, A. Cross, H. Eng, B. Y. Lee, V. Zadorozhny, S. Brown, D. Cummings, D. S. Burke, Contagious diseases in the united states from 1888 to the present, New Engl. J. Med., 2013, 369(22), 2152-2158. doi: 10.1056/NEJMms1215400

    CrossRef Google Scholar

    [26] W. M. Schaffer, B. Kendall, C. W. Tidd, L. F. Olsen, Transient periodicity and episodic predictability in biological dynamics, IMA J. Math. Appl. Med. Biol., 1993, 10(4), 227-247. doi: 10.1093/imammb/10.4.227

    CrossRef Google Scholar

    [27] D. Schenzle, An age-structured model of pre-and post-vaccination measles transmission, IMA J. Math. Appl. Med. Biol., 1984, 1(2), 169-191. doi: 10.1093/imammb/1.2.169

    CrossRef Google Scholar

    [28] I. B. Schwartz, Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models, J. Math. Biol., 1985, 21(3), 347-361. doi: 10.1007/BF00276232

    CrossRef Google Scholar

    [29] H. Smith, Subharmonic bifurcation in an sir epidemic model, J. Math. Biol., 1983, 17(2), 163-177. doi: 10.1007/BF00305757

    CrossRef Google Scholar

    [30] J. Wingfield, G. Kenagy, Natural Regulation of Reproductive Cycles, In Vertebrate Endocrinology: Fundamentals and Biomedical Implications (Eds. P. K. T. Pang and M. P. Schreibman), Vol. 4, Part B, 181-241, 1991.

    Google Scholar

    [31] P. Yu, Computation of normal forms via a perturbation technique, J. Sound and Vib., 1998, 211(1), 19-38. doi: 10.1006/jsvi.1997.1347

    CrossRef Google Scholar

    [32] P. Yu, W. Zhang, L. M. Wahl, Dynamical analysis and simulation of a 2-dimensional disease model with convex incidence, Commun. Nonlinear Sci. Numer. Simulat., 2016, 37, 163-192. doi: 10.1016/j.cnsns.2015.12.022

    CrossRef Google Scholar

    [33] W. Zhang, L. M. Wahl, P. Yu, Conditions for transient viremia in deterministic in-host models: viral blips need no exogenous trigger, SIAM J. Appl. Math., 2013, 73(2), 853-881. doi: 10.1137/120884535

    CrossRef Google Scholar

    [34] W. Zhang, L. M. Wahl, P. Yu, Viral blips may not need a trigger: How transient viremia can arise in deterministic in-host models, SIAM Rev., 2014, 56(1), 127-155. doi: 10.1137/130937421

    CrossRef Google Scholar

Figures(4)

Article Metrics

Article views(2340) PDF downloads(434) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint