2020 Volume 10 Issue 6
Article Contents

Yusen Wu, Ming Zhang, Jinxiu Mao. BIFURCATION OF LIMIT CYCLES AT A NILPOTENT CRITICAL POINT IN A SEPTIC LYAPUNOV SYSTEM[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2575-2591. doi: 10.11948/20190424
Citation: Yusen Wu, Ming Zhang, Jinxiu Mao. BIFURCATION OF LIMIT CYCLES AT A NILPOTENT CRITICAL POINT IN A SEPTIC LYAPUNOV SYSTEM[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2575-2591. doi: 10.11948/20190424

BIFURCATION OF LIMIT CYCLES AT A NILPOTENT CRITICAL POINT IN A SEPTIC LYAPUNOV SYSTEM

  • Corresponding author: Email address:wuyusen621@126.com(Y. Wu) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12071198)
  • In this paper, we characterize local behavior of an isolated nilpotent critical point for a class of septic polynomial differential systems, including center conditions and bifurcation of limit cycles. With the help of computer algebra system-MATHEMATICA 12.0, the first 15 quasi-Lyapunov constants are deduced. As a result, necessary and sufficient conditions of such system having a center are obtained. We prove that there exist 16 small amplitude limit cycles created from the third-order nilpotent critical point. And then we give a lower bound of cyclicity of third-order nilpotent critical point for septic Lyapunov systems.
    MSC: 34C05, 37G15
  • 加载中
  • [1] M. J. Álvarez and A. Gasull, Momodromy and stability for nilpotent critical points, Internat. J. Bifur. Chaos, 2005, 15, 1253–1265. doi: 10.1142/S0218127405012740

    CrossRef Google Scholar

    [2] M. J. Álvarez and A. Gasull, Generating limit cycles from a nilpotent critical point via normal forms, J. Math. Anal. Appl., 2006, 318, 271–287. doi: 10.1016/j.jmaa.2005.05.064

    CrossRef Google Scholar

    [3] V. V. Amelkin, N. A Lukashevich and A. N. Sadovskii, Nonlinear Oscillations in the Second Order Systems, BGU Publ., Minsk (in Russian), 1982.

    Google Scholar

    [4] A. F. Andreev, Investigation of the behavior of the integral curves of a system of two differential equations in the neighbourhood of a singular point, Transl. Amer. Math. Soc., 1958, 8, 183–207.

    Google Scholar

    [5] A. F. Andreev, A. P. Sadovskii and V. A. Tsikalyuk, The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part, Differential Equations, 2003, 39, 155–164. doi: 10.1023/A:1025192613518

    CrossRef Google Scholar

    [6] A. A. Andronov, E. A. Leontovich, I. I. Gordon and A.G. Maier, Theory of Bifurcations of Dynamical Systems on a Plane, Wiley, New York, 1973.

    Google Scholar

    [7] J. Chavarriga, I. García and J. Giné, Integrability of centers perturbed by quasi–homogeneous polynomials, J. Math. Anal. Appl., 1997, 211, 268–278.

    Google Scholar

    [8] J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers, Ergodic Theory Dynam. Systems, 2003, 23, 417–428.

    Google Scholar

    [9] W. W. Farr, C. Li, I. S. Labouriau and W.F. Langford, Degenerate Hopf-bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 1989, 20, 13–29. doi: 10.1137/0520002

    CrossRef Google Scholar

    [10] I. A. García, Cyclicity of some symmetric nilpotent centers, J. Differential Equations, 2016, 260(6), 5356–377. doi: 10.1016/j.jde.2015.12.001

    CrossRef Google Scholar

    [11] I. A. García, Formal inverse integrating factors and the nilpotent center problem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2016, 26(1), 13.

    Google Scholar

    [12] I. A. García, H. Giacomini, J. Giné and J. Llibre, Analytic nilpotent centers as limits of nondegenerate centers revisited, J. Math. Anal. Appl., 2016, 441(2), 893–899. doi: 10.1016/j.jmaa.2016.04.046

    CrossRef Google Scholar

    [13] A. Gasull and J. Gin$\acute{e}$, Cyclicity versus Center Problem, Qual. Theory Dyn. Syst., 2010, 9, 101–113. doi: 10.1007/s12346-010-0022-9

    CrossRef Google Scholar

    [14] A. Gasull and J. Torregrosa, A new algorithm for the computation of the Lyapunov constans for some degenerated critical points, Nonlin. Anal.: Proc. Ⅲ$_rd$ World Congress on Nonlinear Analysis, 2001, 47, 4479–4490.

    Google Scholar

    [15] H. Giacomini, J. Gin$\acute{e}$ and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems, J. Diff. Equat., 2006, 227, 406–426. doi: 10.1016/j.jde.2006.03.012

    CrossRef Google Scholar

    [16] H. Giacomini, J. Gin$\acute{e}$ and J. Llibre, Corrigendum to: "The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems"[J. Differential Equations 227 (2006), no. 2, 406–426], J. Diff. Equat., 2007, 232, 702.

    Google Scholar

    [17] J. Giné, Center conditions for nilpotent cubic systems using the Cherkas method, Mathematics and Computers in Simulation, 2016, 129, 1–9. doi: 10.1016/j.matcom.2016.04.002

    CrossRef Google Scholar

    [18] M. Han, J. Jiang and H. Zhu, Limit cycle bifurcations in Near-Hamiltonian systems by perturbing a nilpotent center, Internat. J. Bifur. Chaos, 2008, 10, 3013–3027.

    Google Scholar

    [19] M. Han, C. Shu, J. Yang, C. Abraham and L. Chian, Polynomial Hamiltonian systems with a nilpotent critical point, Advances in Space Research, 2010, 46, 521–525. doi: 10.1016/j.asr.2008.08.025

    CrossRef Google Scholar

    [20] M. Han and V. Romanvski, Limit cycle bifurcations from a nilpotent focus or center of planar systems, Abstract and Applied Analysis, 2012, 2012, 1–28.

    Google Scholar

    [21] J. Jiang, J. Zhang and M. Han, Limit cycle for a class of quintic Near-Hamiltonian systems near a nilpotent center, Internat. J. Bifur. Chaos, 2009, 6, 2107–2113.

    Google Scholar

    [22] F. Li, Y. Liu, Y. Liu and P. Yu, Bi-center problem and bifurcation of limit cycles from nilpotent singular points in $Z_2$-equivariant cubic vector fields, J. Differential Equations, 2018, 265(10), 4965–4992. doi: 10.1016/j.jde.2018.06.027

    CrossRef Google Scholar

    [23] F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic $Z_2$-equivariant planar systems, J. Differential Equations, 2020, 268, 3819–3847. doi: 10.1016/j.jde.2019.10.011

    CrossRef Google Scholar

    [24] Y. Liu and F. Li, Double bifurcation of nilpotent focus, International Journal of Bifurcation and Chaos, 2015, 25(03), 1550036. doi: 10.1142/S0218127415500364

    CrossRef Google Scholar

    [25] Y. Liu and J. Li, Some classical problems about planar vector fileds (in Chinese), Science press (China), Beijing, 2010.

    Google Scholar

    [26] Y. Liu and J. Li, Bifurcation of limit cycles and center problem for a class of cubic nilpotent system, Int. J. Bifurcation and Chaos, 2010, 20, 2579–2584. doi: 10.1142/S0218127410027210

    CrossRef Google Scholar

    [27] J. Llibre and C. Pantazi, Limit cycles bifurcating from a degenerate center, Math. Comput. Simulation, 2016, 120, 1–11. doi: 10.1016/j.matcom.2015.05.005

    CrossRef Google Scholar

    [28] R. Moussu, Symétrie et forme normale des centres et foyers dégénérés, Ergodic Theory Dynam. Systems, 1982, 2, 241–251. doi: 10.1017/S0143385700001553

    CrossRef Google Scholar

    [29] S. Shi, On the structure of Poincaré–Lyapunov constants for the weak focus of polynomial vector fields, J. Differential Equations, 1984, 52, 52–57. doi: 10.1016/0022-0396(84)90133-5

    CrossRef Google Scholar

    [30] E. Stróżyna and H. Żołdek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations, 2002, 179, 479-537.

    Google Scholar

    [31] X. Sun and L. Zhao, Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points, Applied Mathematics and Computation, 2016, 289, 194–203. doi: 10.1016/j.amc.2016.04.018

    CrossRef Google Scholar

    [32] F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., 1974, 43, 47–100. doi: 10.1007/BF02684366

    CrossRef Google Scholar

    [33] H. Zhang and A. Chen, Global phase portraits of symmetrical cubic Hamiltonian systems with a nilpotent singular point, Journal of Nonlinear Modeling and Analysis, 2019, 1, 193–205.

    Google Scholar

Figures(1)

Article Metrics

Article views(3170) PDF downloads(316) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint