2020 Volume 10 Issue 6
Article Contents

Ji Shu, Jian Zhang. RANDOM ATTRACTORS FOR NON-AUTONOMOUS FRACTIONAL STOCHASTIC GINZBURG-LANDAU EQUATIONS ON UNBOUNDED DOMAINS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2592-2618. doi: 10.11948/20190430
Citation: Ji Shu, Jian Zhang. RANDOM ATTRACTORS FOR NON-AUTONOMOUS FRACTIONAL STOCHASTIC GINZBURG-LANDAU EQUATIONS ON UNBOUNDED DOMAINS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2592-2618. doi: 10.11948/20190430

RANDOM ATTRACTORS FOR NON-AUTONOMOUS FRACTIONAL STOCHASTIC GINZBURG-LANDAU EQUATIONS ON UNBOUNDED DOMAINS

  • Author Bio: Email: shuji@sicnu.edu.cn(J. Shu)
  • Corresponding author: Email: zhangjiancdv@sina.com(J. Zhang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No.11871138), joint research project of Laurent Mathematics Center of Sichuan Normal University and National-Local Joint Engineering Laboratory of System Credibility Automatic Verification
  • This paper deals with the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg-Landau equations driven by additive noise with $ \alpha\in(0,1) $. We prove the existence and uniqueness of tempered pullback random attractors for the equations in $ L^{2}({\bf{R}}^{3}) $. In addition, we also obtain the upper semicontinuity of random attractors when the intensity of noise approaches zero. The main difficulty here is the noncompactness of Sobolev embeddings on unbounded domains. To solve this, we establish the pullback asymptotic compactness of solutions in $ L^{2}({\bf{R}}^{3}) $ by the tail-estimates of solutions.
    MSC: 37L55, 60H15, 35Q56
  • 加载中
  • [1] L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, 1998.

    Google Scholar

    [2] M. Bartuccelli, P. Constantin, C. Doering, J. Gibbon and M. Gisselfält, On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Phys. D, 1990, 44, 421–444. doi: 10.1016/0167-2789(90)90156-J

    CrossRef Google Scholar

    [3] P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical system, Stoch. Dyn., 2006, 6, 1–21.

    Google Scholar

    [4] P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 2009, 246, 845–869. doi: 10.1016/j.jde.2008.05.017

    CrossRef Google Scholar

    [5] Z. Brzezniak and Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 2006, 358, 5587–5629. doi: 10.1090/S0002-9947-06-03923-7

    CrossRef Google Scholar

    [6] I. Chueshov, Monotone Random Systems Theory and Applications, Springer, Berlin, 2002.

    Google Scholar

    [7] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab.Theory Related Fields, 1994, 100, 365–393. doi: 10.1007/BF01193705

    CrossRef Google Scholar

    [8] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 1997, 9, 307–341. doi: 10.1007/BF02219225

    CrossRef Google Scholar

    [9] C. Doering, J. Gibbon and C. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Phys. D, 1994, 71, 285–318. doi: 10.1016/0167-2789(94)90150-3

    CrossRef Google Scholar

    [10] J. Dong and M. Xu, Space-time fractional Schr$\ddot{o}$dinger equation with time-independent potentials, J. Math. Anal. Appl., 2008, 344, 1005–1017. doi: 10.1016/j.jmaa.2008.03.061

    CrossRef Google Scholar

    [11] J. Duan, P. Holme and E. S. Titi, Global existence theory for a generalized Ginzburg-Landau equation, Nonlinearity, 2009, 5, 1303–1314.

    Google Scholar

    [12] X. Fan and Y. Wang, Attractors for a second order nonautonomous lattice dynamical systems with nonlinear damping, Phys. Lett. A, 2007, 365, 17–27. doi: 10.1016/j.physleta.2006.12.045

    CrossRef Google Scholar

    [13] F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stoch. Stoch. Rep., 1996, 59, 21–45. doi: 10.1080/17442509608834083

    CrossRef Google Scholar

    [14] M. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic equations driven by a fractional Brownian motion, Discrete Contin. Dyn. Syst. Ser. B, 2010, 14, 473–493.

    Google Scholar

    [15] A. Gu, D. Li, B. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on ${\bf{R}}^{n}$, J. Differential Equations, 2018, 264, 7094–7137. doi: 10.1016/j.jde.2018.02.011

    CrossRef Google Scholar

    [16] B. Guo, Y. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schr$\ddot{o}$dinger equation, Appl. Math. Comput., 2008, 204, 458–477.

    Google Scholar

    [17] B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schr$\ddot{o}$dinger equation, Commun. Partial Differential Equations, 2011, 36, 247–255.

    Google Scholar

    [18] B. Guo, X. Pu and F. Huang, Fractional Partial Differential Equations and their Numerical Solutions, Science Press, Beijing, 2011.

    Google Scholar

    [19] B. Guo and X. Wang, Finite dimensional behavior for the derivative Ginzburg-Landau equation in two soatial dimensions, Phys. D, 1995, 89, 83–99. doi: 10.1016/0167-2789(95)00216-2

    CrossRef Google Scholar

    [20] B. Guo and M. Zeng, Soltuions for the fractional Landau-Lifshitz equation, J. Math. Anal. Appl., 2010, 361, 131–138. doi: 10.1016/j.jmaa.2009.09.009

    CrossRef Google Scholar

    [21] J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, 1988.

    Google Scholar

    [22] X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical system in weighted space, J. Differential Equations, 2011, 250, 1235–1266. doi: 10.1016/j.jde.2010.10.018

    CrossRef Google Scholar

    [23] Y. Lan and J. Shu, Fractal dimension of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise, Dyn. Syst., 2019, 34(2), 274–300.

    Google Scholar

    [24] Y. Lan and J. Shu, Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise, Commun. Pure Appl. Anal., 2019, 18(5), 2409–2431. doi: 10.3934/cpaa.2019109

    CrossRef Google Scholar

    [25] D. Li, Z. Dai and X. Liu, Long time behavior for generalized complex Ginzburg-Landau equation, J. Math. Anal. Appl., 2007, 330, 938–948.

    Google Scholar

    [26] D. Li and B. Guo, Asymptotic behavior of the 2D generalized stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Mech., 2009, 30, 883–894.

    Google Scholar

    [27] H. Lu, P. W. Bates, S. Lu and M. Zhang, Dynamics of 3-D fractional complex Ginzburg-Landau equation, J.Differential Equations, 2015, 259, 5276–5301. doi: 10.1016/j.jde.2015.06.028

    CrossRef Google Scholar

    [28] H. Lu, P. W. Bates, S. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on a unbounded domain, Commmu. Math. Sci., 2016, 14, 273–295. doi: 10.4310/CMS.2016.v14.n1.a11

    CrossRef Google Scholar

    [29] H. Lu, P. W. Bates, J. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $R^{n}$, Nonlinear Anal., 2015, 128, 176–198. doi: 10.1016/j.na.2015.06.033

    CrossRef Google Scholar

    [30] H. Lu and S. Lv, Random attrator for fractional Ginzburg-Laudau equation with multiplicative noise, Taiwanese J. Math., 2014, 18, 435–450. doi: 10.11650/tjm.18.2014.3053

    CrossRef Google Scholar

    [31] Y. Lv and J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equations, Phys. D, 2006, 221, 157–169. doi: 10.1016/j.physd.2006.07.023

    CrossRef Google Scholar

    [32] B. Maslowski and B. Schmalfuss, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion, Stoch. Anal. Appl., 2004, 22, 1577–1607. doi: 10.1081/SAP-200029498

    CrossRef Google Scholar

    [33] F. Morillas and J. Valero, Attractors for reaction-diffusion equations in ${\bf{R}}^{n}$ with continuous nonlinearity, Asymptot. Anal., 2005, 44, 111–130.

    Google Scholar

    [34] E. D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136, 521–573. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [35] X. Pu and B. Guo, Global weak Soltuions of the fractional Landau-Lifshitz -Maxwell equation, J. Math. Anal. Appl., 2010, 372, 86–98. doi: 10.1016/j.jmaa.2010.06.035

    CrossRef Google Scholar

    [36] X. Pu and B. Guo, Well-posedness and dynamics for the fractional Ginzburg-Laudau equation, Appl. Anal., 2013, 92, 318–334. doi: 10.1080/00036811.2011.614601

    CrossRef Google Scholar

    [37] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.

    Google Scholar

    [38] B. Schmalfuss, Backward cocycle and atttractors of stochastic differential equations, in: V. Reitmann, T. Riedrich, N. Koksch(Eds.), International Semilar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Technische Universität, Dresden, 1992, pp.185–192.

    Google Scholar

    [39] G. Sell and Y. You, Dynamics of Evolutional Equations, Springer-Verlag, New York, 2002.

    Google Scholar

    [40] R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc.Roy.Soc.Edinburgh Sect.A, 2014, 144, 831–855. doi: 10.1017/S0308210512001783

    CrossRef Google Scholar

    [41] T. Shen and J. Huang, Well-posedness and dynamics of stochastic fractional model for nonlinear optical fiber materials, Nonlinear Anal., 2014, 110, 33–46. doi: 10.1016/j.na.2014.06.018

    CrossRef Google Scholar

    [42] Z. Shen, S. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 2010, 248, 1432–1457. doi: 10.1016/j.jde.2009.10.007

    CrossRef Google Scholar

    [43] J. Shu, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22, 1587–1599.

    Google Scholar

    [44] J. Shu, P. Li, J. Zhang and O. Liao, Random attractors for the stochastic coupled fractional Ginzburg-Landau equation with additive noise, J. Math. Phys., 2015, 56, 102702. doi: 10.1063/1.4934724

    CrossRef Google Scholar

    [45] E. Tarasov Vasily and M. Zaslavsky George, Fractional Ginzburg-Laudau equation for fractal media, Phys. A, 2005, 354, 249–261. doi: 10.1016/j.physa.2005.02.047

    CrossRef Google Scholar

    [46] R. Temam, Infinite Dimension Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.

    Google Scholar

    [47] M. J. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechnics, Kluwer Academic Publishers, Boston, 1988.

    Google Scholar

    [48] P. Walters, Introduction to Ergodic Theory, Springer-Verlag, New York, 2000.

    Google Scholar

    [49] B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 2009, 71, 2811–2828. doi: 10.1016/j.na.2009.01.131

    CrossRef Google Scholar

    [50] B. Wang, Upper semicontinuity of random for non-compact random systems, J.Differential Equations, 2009, 139, 1–18.

    Google Scholar

    [51] B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $R^{3}$, Trans. Amer. Math. Soc., 2011, 363, 3639–3663. doi: 10.1090/S0002-9947-2011-05247-5

    CrossRef Google Scholar

    [52] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 2012, 253, 1544–1583. doi: 10.1016/j.jde.2012.05.015

    CrossRef Google Scholar

    [53] B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. A, 2014, 34, 269–300. doi: 10.3934/dcds.2014.34.269

    CrossRef Google Scholar

    [54] B. Wang, Existence and upper-semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 2014, 14(4), 1450009(1–31). doi: 10.1142/S0219493714500099

    CrossRef Google Scholar

    [55] B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 2017, 158, 60–82. doi: 10.1016/j.na.2017.04.006

    CrossRef Google Scholar

    [56] X. Wang, S. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal., 2010, 72, 483–494. doi: 10.1016/j.na.2009.06.094

    CrossRef Google Scholar

    [57] W. Yan, S. Ji and Y. Li, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations, Phys. Lett. A, 2009, 373, 1268–1275. doi: 10.1016/j.physleta.2009.02.019

    CrossRef Google Scholar

    [58] J. Yin, Y. Li and A. Gu, Backwards compact attractors and periodic attractors for non-autonomous damped wave equations on an unbounded domain, Comput. Math. Appl., 2017, 74, 744–758. doi: 10.1016/j.camwa.2017.05.015

    CrossRef Google Scholar

    [59] F. Yin and L. Liu, D-pullback attractor for a non-autonomous wave equation with additive noise on unbounded domains, Comput. Math. Appl., 2014, 68, 424–438. doi: 10.1016/j.camwa.2014.06.018

    CrossRef Google Scholar

    [60] J. Zhang and J. Shu, Existence and upper semicontinuity of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations, J. Math. Phys., 2019, 60, 042702. doi: 10.1063/1.5037480

    CrossRef Google Scholar

    [61] W. Zhao, Existence and upper-semicontinuity of pullback attractors in $H^{1}({\bf{R}}^{n})$ for non-autonomous reaction-diffusion equations perturbed by multiplicative nois, Electronic J. Differential Equations, 2016, 2016, 1–28.

    Google Scholar

    [62] C. Zhao and S. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 2009, 354, 78–95. doi: 10.1016/j.jmaa.2008.12.036

    CrossRef Google Scholar

    [63] S. Zhou and M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 2015, 120, 202–226. doi: 10.1016/j.na.2015.03.009

    CrossRef Google Scholar

Article Metrics

Article views(3177) PDF downloads(474) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint