[1]
|
L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, 1998.
Google Scholar
|
[2]
|
M. Bartuccelli, P. Constantin, C. Doering, J. Gibbon and M. Gisselfält, On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Phys. D, 1990, 44, 421–444. doi: 10.1016/0167-2789(90)90156-J
CrossRef Google Scholar
|
[3]
|
P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical system, Stoch. Dyn., 2006, 6, 1–21.
Google Scholar
|
[4]
|
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 2009, 246, 845–869. doi: 10.1016/j.jde.2008.05.017
CrossRef Google Scholar
|
[5]
|
Z. Brzezniak and Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 2006, 358, 5587–5629. doi: 10.1090/S0002-9947-06-03923-7
CrossRef Google Scholar
|
[6]
|
I. Chueshov, Monotone Random Systems Theory and Applications, Springer, Berlin, 2002.
Google Scholar
|
[7]
|
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab.Theory Related Fields, 1994, 100, 365–393. doi: 10.1007/BF01193705
CrossRef Google Scholar
|
[8]
|
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 1997, 9, 307–341. doi: 10.1007/BF02219225
CrossRef Google Scholar
|
[9]
|
C. Doering, J. Gibbon and C. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Phys. D, 1994, 71, 285–318. doi: 10.1016/0167-2789(94)90150-3
CrossRef Google Scholar
|
[10]
|
J. Dong and M. Xu, Space-time fractional Schr$\ddot{o}$dinger equation with time-independent potentials, J. Math. Anal. Appl., 2008, 344, 1005–1017. doi: 10.1016/j.jmaa.2008.03.061
CrossRef Google Scholar
|
[11]
|
J. Duan, P. Holme and E. S. Titi, Global existence theory for a generalized Ginzburg-Landau equation, Nonlinearity, 2009, 5, 1303–1314.
Google Scholar
|
[12]
|
X. Fan and Y. Wang, Attractors for a second order nonautonomous lattice dynamical systems with nonlinear damping, Phys. Lett. A, 2007, 365, 17–27. doi: 10.1016/j.physleta.2006.12.045
CrossRef Google Scholar
|
[13]
|
F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stoch. Stoch. Rep., 1996, 59, 21–45. doi: 10.1080/17442509608834083
CrossRef Google Scholar
|
[14]
|
M. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic equations driven by a fractional Brownian motion, Discrete Contin. Dyn. Syst. Ser. B, 2010, 14, 473–493.
Google Scholar
|
[15]
|
A. Gu, D. Li, B. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on ${\bf{R}}^{n}$, J. Differential Equations, 2018, 264, 7094–7137. doi: 10.1016/j.jde.2018.02.011
CrossRef Google Scholar
|
[16]
|
B. Guo, Y. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schr$\ddot{o}$dinger equation, Appl. Math. Comput., 2008, 204, 458–477.
Google Scholar
|
[17]
|
B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schr$\ddot{o}$dinger equation, Commun. Partial Differential Equations, 2011, 36, 247–255.
Google Scholar
|
[18]
|
B. Guo, X. Pu and F. Huang, Fractional Partial Differential Equations and their Numerical Solutions, Science Press, Beijing, 2011.
Google Scholar
|
[19]
|
B. Guo and X. Wang, Finite dimensional behavior for the derivative Ginzburg-Landau equation in two soatial dimensions, Phys. D, 1995, 89, 83–99. doi: 10.1016/0167-2789(95)00216-2
CrossRef Google Scholar
|
[20]
|
B. Guo and M. Zeng, Soltuions for the fractional Landau-Lifshitz equation, J. Math. Anal. Appl., 2010, 361, 131–138. doi: 10.1016/j.jmaa.2009.09.009
CrossRef Google Scholar
|
[21]
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, 1988.
Google Scholar
|
[22]
|
X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical system in weighted space, J. Differential Equations, 2011, 250, 1235–1266. doi: 10.1016/j.jde.2010.10.018
CrossRef Google Scholar
|
[23]
|
Y. Lan and J. Shu, Fractal dimension of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise, Dyn. Syst., 2019, 34(2), 274–300.
Google Scholar
|
[24]
|
Y. Lan and J. Shu, Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise, Commun. Pure Appl. Anal., 2019, 18(5), 2409–2431. doi: 10.3934/cpaa.2019109
CrossRef Google Scholar
|
[25]
|
D. Li, Z. Dai and X. Liu, Long time behavior for generalized complex Ginzburg-Landau equation, J. Math. Anal. Appl., 2007, 330, 938–948.
Google Scholar
|
[26]
|
D. Li and B. Guo, Asymptotic behavior of the 2D generalized stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Mech., 2009, 30, 883–894.
Google Scholar
|
[27]
|
H. Lu, P. W. Bates, S. Lu and M. Zhang, Dynamics of 3-D fractional complex Ginzburg-Landau equation, J.Differential Equations, 2015, 259, 5276–5301. doi: 10.1016/j.jde.2015.06.028
CrossRef Google Scholar
|
[28]
|
H. Lu, P. W. Bates, S. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on a unbounded domain, Commmu. Math. Sci., 2016, 14, 273–295. doi: 10.4310/CMS.2016.v14.n1.a11
CrossRef Google Scholar
|
[29]
|
H. Lu, P. W. Bates, J. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $R^{n}$, Nonlinear Anal., 2015, 128, 176–198. doi: 10.1016/j.na.2015.06.033
CrossRef Google Scholar
|
[30]
|
H. Lu and S. Lv, Random attrator for fractional Ginzburg-Laudau equation with multiplicative noise, Taiwanese J. Math., 2014, 18, 435–450. doi: 10.11650/tjm.18.2014.3053
CrossRef Google Scholar
|
[31]
|
Y. Lv and J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equations, Phys. D, 2006, 221, 157–169. doi: 10.1016/j.physd.2006.07.023
CrossRef Google Scholar
|
[32]
|
B. Maslowski and B. Schmalfuss, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion, Stoch. Anal. Appl., 2004, 22, 1577–1607. doi: 10.1081/SAP-200029498
CrossRef Google Scholar
|
[33]
|
F. Morillas and J. Valero, Attractors for reaction-diffusion equations in ${\bf{R}}^{n}$ with continuous nonlinearity, Asymptot. Anal., 2005, 44, 111–130.
Google Scholar
|
[34]
|
E. D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136, 521–573. doi: 10.1016/j.bulsci.2011.12.004
CrossRef Google Scholar
|
[35]
|
X. Pu and B. Guo, Global weak Soltuions of the fractional Landau-Lifshitz -Maxwell equation, J. Math. Anal. Appl., 2010, 372, 86–98. doi: 10.1016/j.jmaa.2010.06.035
CrossRef Google Scholar
|
[36]
|
X. Pu and B. Guo, Well-posedness and dynamics for the fractional Ginzburg-Laudau equation, Appl. Anal., 2013, 92, 318–334. doi: 10.1080/00036811.2011.614601
CrossRef Google Scholar
|
[37]
|
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.
Google Scholar
|
[38]
|
B. Schmalfuss, Backward cocycle and atttractors of stochastic differential equations, in: V. Reitmann, T. Riedrich, N. Koksch(Eds.), International Semilar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Technische Universität, Dresden, 1992, pp.185–192.
Google Scholar
|
[39]
|
G. Sell and Y. You, Dynamics of Evolutional Equations, Springer-Verlag, New York, 2002.
Google Scholar
|
[40]
|
R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc.Roy.Soc.Edinburgh Sect.A, 2014, 144, 831–855. doi: 10.1017/S0308210512001783
CrossRef Google Scholar
|
[41]
|
T. Shen and J. Huang, Well-posedness and dynamics of stochastic fractional model for nonlinear optical fiber materials, Nonlinear Anal., 2014, 110, 33–46. doi: 10.1016/j.na.2014.06.018
CrossRef Google Scholar
|
[42]
|
Z. Shen, S. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 2010, 248, 1432–1457. doi: 10.1016/j.jde.2009.10.007
CrossRef Google Scholar
|
[43]
|
J. Shu, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22, 1587–1599.
Google Scholar
|
[44]
|
J. Shu, P. Li, J. Zhang and O. Liao, Random attractors for the stochastic coupled fractional Ginzburg-Landau equation with additive noise, J. Math. Phys., 2015, 56, 102702. doi: 10.1063/1.4934724
CrossRef Google Scholar
|
[45]
|
E. Tarasov Vasily and M. Zaslavsky George, Fractional Ginzburg-Laudau equation for fractal media, Phys. A, 2005, 354, 249–261. doi: 10.1016/j.physa.2005.02.047
CrossRef Google Scholar
|
[46]
|
R. Temam, Infinite Dimension Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
Google Scholar
|
[47]
|
M. J. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechnics, Kluwer Academic Publishers, Boston, 1988.
Google Scholar
|
[48]
|
P. Walters, Introduction to Ergodic Theory, Springer-Verlag, New York, 2000.
Google Scholar
|
[49]
|
B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 2009, 71, 2811–2828. doi: 10.1016/j.na.2009.01.131
CrossRef Google Scholar
|
[50]
|
B. Wang, Upper semicontinuity of random for non-compact random systems, J.Differential Equations, 2009, 139, 1–18.
Google Scholar
|
[51]
|
B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $R^{3}$, Trans. Amer. Math. Soc., 2011, 363, 3639–3663. doi: 10.1090/S0002-9947-2011-05247-5
CrossRef Google Scholar
|
[52]
|
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 2012, 253, 1544–1583. doi: 10.1016/j.jde.2012.05.015
CrossRef Google Scholar
|
[53]
|
B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. A, 2014, 34, 269–300. doi: 10.3934/dcds.2014.34.269
CrossRef Google Scholar
|
[54]
|
B. Wang, Existence and upper-semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 2014, 14(4), 1450009(1–31). doi: 10.1142/S0219493714500099
CrossRef Google Scholar
|
[55]
|
B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 2017, 158, 60–82. doi: 10.1016/j.na.2017.04.006
CrossRef Google Scholar
|
[56]
|
X. Wang, S. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal., 2010, 72, 483–494. doi: 10.1016/j.na.2009.06.094
CrossRef Google Scholar
|
[57]
|
W. Yan, S. Ji and Y. Li, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations, Phys. Lett. A, 2009, 373, 1268–1275. doi: 10.1016/j.physleta.2009.02.019
CrossRef Google Scholar
|
[58]
|
J. Yin, Y. Li and A. Gu, Backwards compact attractors and periodic attractors for non-autonomous damped wave equations on an unbounded domain, Comput. Math. Appl., 2017, 74, 744–758. doi: 10.1016/j.camwa.2017.05.015
CrossRef Google Scholar
|
[59]
|
F. Yin and L. Liu, D-pullback attractor for a non-autonomous wave equation with additive noise on unbounded domains, Comput. Math. Appl., 2014, 68, 424–438. doi: 10.1016/j.camwa.2014.06.018
CrossRef Google Scholar
|
[60]
|
J. Zhang and J. Shu, Existence and upper semicontinuity of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations, J. Math. Phys., 2019, 60, 042702. doi: 10.1063/1.5037480
CrossRef Google Scholar
|
[61]
|
W. Zhao, Existence and upper-semicontinuity of pullback attractors in $H^{1}({\bf{R}}^{n})$ for non-autonomous reaction-diffusion equations perturbed by multiplicative nois, Electronic J. Differential Equations, 2016, 2016, 1–28.
Google Scholar
|
[62]
|
C. Zhao and S. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 2009, 354, 78–95. doi: 10.1016/j.jmaa.2008.12.036
CrossRef Google Scholar
|
[63]
|
S. Zhou and M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 2015, 120, 202–226. doi: 10.1016/j.na.2015.03.009
CrossRef Google Scholar
|